On the Lagrange-Souriau form in classical field theory

D. R. Grigore; Octavian T. Popp

Mathematica Bohemica (1998)

  • Volume: 123, Issue: 1, page 73-86
  • ISSN: 0862-7959

Abstract

top
The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form.

How to cite

top

Grigore, D. R., and Popp, Octavian T.. "On the Lagrange-Souriau form in classical field theory." Mathematica Bohemica 123.1 (1998): 73-86. <http://eudml.org/doc/248311>.

@article{Grigore1998,
abstract = {The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form.},
author = {Grigore, D. R., Popp, Octavian T.},
journal = {Mathematica Bohemica},
keywords = {Lagrangian formalism; classical field theory; Noetherian symmetries; Lagrangian formalism; classical field theory; Noetherian symmetries},
language = {eng},
number = {1},
pages = {73-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Lagrange-Souriau form in classical field theory},
url = {http://eudml.org/doc/248311},
volume = {123},
year = {1998},
}

TY - JOUR
AU - Grigore, D. R.
AU - Popp, Octavian T.
TI - On the Lagrange-Souriau form in classical field theory
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 1
SP - 73
EP - 86
AB - The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form.
LA - eng
KW - Lagrangian formalism; classical field theory; Noetherian symmetries; Lagrangian formalism; classical field theory; Noetherian symmetries
UR - http://eudml.org/doc/248311
ER -

References

top
  1. H. Poincaré, Leçons sur les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1892. 
  2. E. Cartan, Leçons sur les invariants integraux, Hermann, Paris, 1922. (1922) MR0355764
  3. J. Klein, 10.5802/aif.120, Ann. Inst. Fourier 12 (1962), 1-124. (1962) MR0215269DOI10.5802/aif.120
  4. J. M. Souriau, Structure des Systemes Dynamique, Dunod, Paris, 1970. (1970) MR0260238
  5. P. Horvàthy, 10.1063/1.523961, J. Math. Phys. 20 (1979), 49-52. (1979) MR0517368DOI10.1063/1.523961
  6. D. Krupka, A map associated to the Lepagean forms of the calculus of variations in fibered manifolds, Czechoslovak Math. J. 27 (1977), 114-118. (1977) MR0431272
  7. D. E. Betounes, 10.1103/PhysRevD.29.599, Phys. Rev. D 29 (1984), 599-606. (1984) MR0734285DOI10.1103/PhysRevD.29.599
  8. D. E. Betounes, 10.1063/1.527832, J. Math. Phys. 28 (1987), 2347-2353. (1987) Zbl0646.58033MR0907999DOI10.1063/1.527832
  9. H. Rund, A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals, Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469. (1985) Zbl0578.49025MR0822534
  10. P. L. Garcia, The Poincare-Cartan invariant in the calculus of variations, Symp. Math. 14 (1974), 219-246. (1974) Zbl0303.53040MR0406246
  11. H. Goldschmits, S. Sternberg, 10.5802/aif.451, Ann. Inst. Fourier 23 (1973), 203-267. (1973) MR0341531DOI10.5802/aif.451
  12. M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism, Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235. (1990) MR1098517
  13. D. J. Saunders, 10.1088/0305-4470/20/2/019, J. Phys. A 20 (1987), 339-349. (1987) MR0874255DOI10.1088/0305-4470/20/2/019
  14. I. Kijowski, 10.1007/BF01645975, Comm. Math. Phys. 30 (1973), 99-128. (1973) MR0334772DOI10.1007/BF01645975
  15. W. M. Tulczjew, The Lagrange complex, Bull. Soc. Math. France 105 (1977), 419-431. (1977) MR0494272
  16. W. M. Tulcziew, The Euler-Lagrange resolution, International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48. (1979) MR0607685
  17. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin, 1986. (1986) Zbl0588.22001MR0836734
  18. D. G. Edelen, 10.1007/BF00253934, Arch. Rat. Mech. Anal. 11 (1962), 117-121. (1962) Zbl0125.33002MR0150623DOI10.1007/BF00253934
  19. H. Rund, 10.1007/BF01834920, Aequationes Math. 11 (1974), 212-229. (1974) MR0361971DOI10.1007/BF01834920
  20. D. Krupka, 10.1016/0022-247X(75)90169-9, J. Math. Anal. Appl. 49 (1975), 180-206. (1975) Zbl0312.58002MR0362397DOI10.1016/0022-247X(75)90169-9
  21. S. Hojman, 10.1103/PhysRevD.27.451, Phys. Rev. D 27 (1983), 451-453. (1983) DOI10.1103/PhysRevD.27.451
  22. D. R. Grigore, 10.1142/S0217751X9200329X, Internat. J. Modern Phys. A 7 (1992), 7153-7168. (1992) Zbl0972.37523MR1189252DOI10.1142/S0217751X9200329X
  23. D. R. Grigore, 10.1088/0305-4470/25/13/026, J. Phys. A 25 (1992), 3797-3811. (1992) Zbl0755.58063MR1172077DOI10.1088/0305-4470/25/13/026
  24. D. R. Grigore, 10.1088/0264-9381/9/6/012, Class. Quant. Gravity 9 (1992), 1555-1571. (1992) MR1166690DOI10.1088/0264-9381/9/6/012
  25. D. R. Grigore, A generalized Lagrangian formalism in particle mechanics and classical field theory, Fortschr. Phys. 41 (1993), 567-617. (1993) MR1247114
  26. O. T. Popp, Cohomology for Lagrangian systems and Noetherian symmetries, Submitted. 
  27. J. M. Lévy-Leblond, 10.1007/BF01646436, Comment. Math. Phys. 12 (1969), 64-79. (1969) MR0249006DOI10.1007/BF01646436

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.