On the Lagrange-Souriau form in classical field theory
D. R. Grigore; Octavian T. Popp
Mathematica Bohemica (1998)
- Volume: 123, Issue: 1, page 73-86
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGrigore, D. R., and Popp, Octavian T.. "On the Lagrange-Souriau form in classical field theory." Mathematica Bohemica 123.1 (1998): 73-86. <http://eudml.org/doc/248311>.
@article{Grigore1998,
abstract = {The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form.},
author = {Grigore, D. R., Popp, Octavian T.},
journal = {Mathematica Bohemica},
keywords = {Lagrangian formalism; classical field theory; Noetherian symmetries; Lagrangian formalism; classical field theory; Noetherian symmetries},
language = {eng},
number = {1},
pages = {73-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Lagrange-Souriau form in classical field theory},
url = {http://eudml.org/doc/248311},
volume = {123},
year = {1998},
}
TY - JOUR
AU - Grigore, D. R.
AU - Popp, Octavian T.
TI - On the Lagrange-Souriau form in classical field theory
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 1
SP - 73
EP - 86
AB - The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form.
LA - eng
KW - Lagrangian formalism; classical field theory; Noetherian symmetries; Lagrangian formalism; classical field theory; Noetherian symmetries
UR - http://eudml.org/doc/248311
ER -
References
top- H. Poincaré, Leçons sur les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1892.
- E. Cartan, Leçons sur les invariants integraux, Hermann, Paris, 1922. (1922) MR0355764
- J. Klein, 10.5802/aif.120, Ann. Inst. Fourier 12 (1962), 1-124. (1962) MR0215269DOI10.5802/aif.120
- J. M. Souriau, Structure des Systemes Dynamique, Dunod, Paris, 1970. (1970) MR0260238
- P. Horvàthy, 10.1063/1.523961, J. Math. Phys. 20 (1979), 49-52. (1979) MR0517368DOI10.1063/1.523961
- D. Krupka, A map associated to the Lepagean forms of the calculus of variations in fibered manifolds, Czechoslovak Math. J. 27 (1977), 114-118. (1977) MR0431272
- D. E. Betounes, 10.1103/PhysRevD.29.599, Phys. Rev. D 29 (1984), 599-606. (1984) MR0734285DOI10.1103/PhysRevD.29.599
- D. E. Betounes, 10.1063/1.527832, J. Math. Phys. 28 (1987), 2347-2353. (1987) Zbl0646.58033MR0907999DOI10.1063/1.527832
- H. Rund, A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals, Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469. (1985) Zbl0578.49025MR0822534
- P. L. Garcia, The Poincare-Cartan invariant in the calculus of variations, Symp. Math. 14 (1974), 219-246. (1974) Zbl0303.53040MR0406246
- H. Goldschmits, S. Sternberg, 10.5802/aif.451, Ann. Inst. Fourier 23 (1973), 203-267. (1973) MR0341531DOI10.5802/aif.451
- M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism, Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235. (1990) MR1098517
- D. J. Saunders, 10.1088/0305-4470/20/2/019, J. Phys. A 20 (1987), 339-349. (1987) MR0874255DOI10.1088/0305-4470/20/2/019
- I. Kijowski, 10.1007/BF01645975, Comm. Math. Phys. 30 (1973), 99-128. (1973) MR0334772DOI10.1007/BF01645975
- W. M. Tulczjew, The Lagrange complex, Bull. Soc. Math. France 105 (1977), 419-431. (1977) MR0494272
- W. M. Tulcziew, The Euler-Lagrange resolution, International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48. (1979) MR0607685
- P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin, 1986. (1986) Zbl0588.22001MR0836734
- D. G. Edelen, 10.1007/BF00253934, Arch. Rat. Mech. Anal. 11 (1962), 117-121. (1962) Zbl0125.33002MR0150623DOI10.1007/BF00253934
- H. Rund, 10.1007/BF01834920, Aequationes Math. 11 (1974), 212-229. (1974) MR0361971DOI10.1007/BF01834920
- D. Krupka, 10.1016/0022-247X(75)90169-9, J. Math. Anal. Appl. 49 (1975), 180-206. (1975) Zbl0312.58002MR0362397DOI10.1016/0022-247X(75)90169-9
- S. Hojman, 10.1103/PhysRevD.27.451, Phys. Rev. D 27 (1983), 451-453. (1983) DOI10.1103/PhysRevD.27.451
- D. R. Grigore, 10.1142/S0217751X9200329X, Internat. J. Modern Phys. A 7 (1992), 7153-7168. (1992) Zbl0972.37523MR1189252DOI10.1142/S0217751X9200329X
- D. R. Grigore, 10.1088/0305-4470/25/13/026, J. Phys. A 25 (1992), 3797-3811. (1992) Zbl0755.58063MR1172077DOI10.1088/0305-4470/25/13/026
- D. R. Grigore, 10.1088/0264-9381/9/6/012, Class. Quant. Gravity 9 (1992), 1555-1571. (1992) MR1166690DOI10.1088/0264-9381/9/6/012
- D. R. Grigore, A generalized Lagrangian formalism in particle mechanics and classical field theory, Fortschr. Phys. 41 (1993), 567-617. (1993) MR1247114
- O. T. Popp, Cohomology for Lagrangian systems and Noetherian symmetries, Submitted.
- J. M. Lévy-Leblond, 10.1007/BF01646436, Comment. Math. Phys. 12 (1969), 64-79. (1969) MR0249006DOI10.1007/BF01646436
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.