On the almost Goldbach problem of Linnik

Jianya Liu; Ming-Chit Liu; Tianze Wang

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 1, page 133-147
  • ISSN: 1246-7405

Abstract

top
Under the Generalized Riemann Hypothesis, it is proved that for any k 200 there is N k > 0 depending on k only such that every even integer N k is a sum of two odd primes and k powers of 2 .

How to cite

top

Liu, Jianya, Liu, Ming-Chit, and Wang, Tianze. "On the almost Goldbach problem of Linnik." Journal de théorie des nombres de Bordeaux 11.1 (1999): 133-147. <http://eudml.org/doc/248325>.

@article{Liu1999,
abstract = {Under the Generalized Riemann Hypothesis, it is proved that for any $k \ge 200$ there is $ N_k &gt; 0$ depending on $k$ only such that every even integer $\ge N_k$ is a sum of two odd primes and $k$ powers of $2$.},
author = {Liu, Jianya, Liu, Ming-Chit, Wang, Tianze},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {almost Goldbach problem; generalized Riemann hypothesis},
language = {eng},
number = {1},
pages = {133-147},
publisher = {Université Bordeaux I},
title = {On the almost Goldbach problem of Linnik},
url = {http://eudml.org/doc/248325},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Liu, Jianya
AU - Liu, Ming-Chit
AU - Wang, Tianze
TI - On the almost Goldbach problem of Linnik
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 133
EP - 147
AB - Under the Generalized Riemann Hypothesis, it is proved that for any $k \ge 200$ there is $ N_k &gt; 0$ depending on $k$ only such that every even integer $\ge N_k$ is a sum of two odd primes and $k$ powers of $2$.
LA - eng
KW - almost Goldbach problem; generalized Riemann hypothesis
UR - http://eudml.org/doc/248325
ER -

References

top
  1. [C] J.R. Chen, On Goldbach's problem and the sieve methods. Sci. Sin., 21 (1978), 701-739. Zbl0399.10046MR517935
  2. [D] H. Davenport, Multiplicative Number Theory. 2nd ed., Springer, 1980. Zbl0453.10002MR606931
  3. [G] P.X. Gallagher, Primes and powers of 2. Invent. Math.29(1975), 125-142. Zbl0305.10044MR379410
  4. [HL] G.H. Hardy and J.E. Littlewood, Some problems of "patitio numerorum" V: A further contribution to the study of Goldbach's problem. Proc. London Math. Soc. (2) 22 (1923), 45-56. JFM49.0127.03
  5. [HR] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, 1974. Zbl0298.10026MR424730
  6. [KPP] J. Kaczorowski, A. Perelli and J. Pintz, A note on the exceptional set for Goldbach's problem in short intervals. Mh. Math.116 (1993), 275-282; corrigendum 119 (1995), 215-216. Zbl0792.11040
  7. [L1] Yu. V. Linnik, Prime numbers and powers of two. Trudy Mat. Inst. Steklov38 (1951), 151-169. Zbl0049.31402MR50618
  8. [L2] Yu.V. Linnik, Addition of prime numbers and powers of one and the same number. Mat. Sb.(N. S.) 32 (1953), 3-60. Zbl0051.03402MR59938
  9. [LLW1] J.Y. Liu, M.C. Liu, and T.Z. Wang, The number of powers of 2 in a representation of large even integers (I). Sci. China Ser.A41 (1998), 386-398. Zbl1029.11049MR1663182
  10. [LLW2] J.Y. Liu, M.C. Liu, and T.Z. Wang, The number of powers of 2 in a representation of large even integers (II). Sci. China Ser.A. 41 (1998), 1255-1271. Zbl0924.11086MR1681935
  11. [LP] A. Languasco and A. Perelli, A pair correlation hypothesis and the exceptional set in Goldbach's problem. Mathematika43 (1996), 349-361. Zbl0884.11042MR1433280
  12. [P] K. Prachar, Primzahlverteilung. Springer, 1957. Zbl0080.25901MR87685
  13. [R] N.P. Romanoff, Über einige Sätze der additiven Zahlentheorie. Math. Ann.109 (1934), 668-678. Zbl0009.00801MR1512916JFM60.0131.03
  14. [RS] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math.6 (1962), 64-94. Zbl0122.05001MR137689
  15. [Vi] A.I. Vinogradov, On an "almost binary" problem. Izv. Akad. Nauk. SSSR Ser. Mat.20 (1956), 713-750. Zbl0072.27001MR87686

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.