The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the almost Goldbach problem of Linnik”

On the fractional parts of x / n and related sequences. II

Bahman Saffari, R. C. Vaughan (1977)

Annales de l'institut Fourier

Similarity:

As promised in the first paper of this series (Ann. Inst. Fourier, 26-4 (1976), 115-131), these two articles deal with the asymptotic distribution of the fractional parts of x h ( x ) where h is an arithmetical function (namely h ( n ) = 1 / n , h ( n ) = log n , h ( n ) = 1 / log n ) and n is an integer (or a prime order) running over the interval [ y ( x ) , x ) ] . The results obtained are rather sharp, although one can improve on some of them at the cost of increased technicality. Number-theoretic applications will be given later on.

On the largest prime factor of n ! + 2 n - 1

Florian Luca, Igor E. Shparlinski (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For an integer n 2 we denote by P ( n ) the largest prime factor of n . We obtain several upper bounds on the number of solutions of congruences of the form n ! + 2 n - 1 0 ( mod q ) and use these bounds to show that lim sup n P ( n ! + 2 n - 1 ) / n ( 2 π 2 + 3 ) / 18 .

Goldbach numbers in sparse sequences

Jörg Brüdern, Alberto Perelli (1998)

Annales de l'institut Fourier

Similarity:

We show that for almost all n N , the inequality | p 1 + p 2 - exp ( ( log n ) γ ) | < 1 has solutions with odd prime numbers p 1 and p 2 , provided 1 < γ < 3 2 . Moreover, we give a rather sharp bound for the exceptional set. This result provides almost-all results for Goldbach numbers in sequences rather thinner than the values taken by any polynomial.