Lubin-Tate formal groups and module structure over Hopf orders
Journal de théorie des nombres de Bordeaux (1999)
- Volume: 11, Issue: 2, page 269-305
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBley, Werner, and Boltje, Robert. "Lubin-Tate formal groups and module structure over Hopf orders." Journal de théorie des nombres de Bordeaux 11.2 (1999): 269-305. <http://eudml.org/doc/248329>.
@article{Bley1999,
abstract = {Over the last years Hopf orders have played an important role in the study of integral module structures arising in arithmetic geometry in various situations. We axiomatize these situations and discuss the properties of the (integral) Hopf algebra structures which are of interest in this general setting. In particular, we emphasize the role of resolvents for explicit computations. As an illustration we apply our results to determine the Hopf module structure of the ring of integers in relative Lubin-Tate extensions.},
author = {Bley, Werner, Boltje, Robert},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Hopf orders; formal groups; descent; associated orders},
language = {eng},
number = {2},
pages = {269-305},
publisher = {Université Bordeaux I},
title = {Lubin-Tate formal groups and module structure over Hopf orders},
url = {http://eudml.org/doc/248329},
volume = {11},
year = {1999},
}
TY - JOUR
AU - Bley, Werner
AU - Boltje, Robert
TI - Lubin-Tate formal groups and module structure over Hopf orders
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 2
SP - 269
EP - 305
AB - Over the last years Hopf orders have played an important role in the study of integral module structures arising in arithmetic geometry in various situations. We axiomatize these situations and discuss the properties of the (integral) Hopf algebra structures which are of interest in this general setting. In particular, we emphasize the role of resolvents for explicit computations. As an illustration we apply our results to determine the Hopf module structure of the ring of integers in relative Lubin-Tate extensions.
LA - eng
KW - Hopf orders; formal groups; descent; associated orders
UR - http://eudml.org/doc/248329
ER -
References
top- [A] A. Agboola, Torsion points on elliptic curves and galois module structure. Invent. Math.123 (1996), 105-122. Zbl0864.11055MR1376248
- [B] W. Bley, Elliptic curves and module structure over Hopf orders and The conjecture of Chinburg-Stark for abelian extensions of a quadratic imaginary field. Habilitation Thesis Universität Augsburg, Report des Instituts für Mathematik der Universität Augsburg No. 396, 1998.
- [BT] N. Byott, M.J. Taylor, Hopf orders and Galois module structure. In: Group rings and class groups, R. W. Roggenkamp, M. J. Taylor (eds.) Birkhäuser, BaselBoston, 1992. Zbl0811.11068MR1167451
- [By] N. Byott, Associated orders of certain extensions arising fom Lubin-Tate formal groups. J. Théor. Nombres Bordeaux9 (1997),449-462. Zbl0902.11052MR1617408
- [CT] Ph. Cassou-Noguès, M.J. Taylor, Elliptic functions and rings of integers. Prog. in Math.66, Basel-Stuttgart-Boston, 1987. Zbl0608.12013MR886887
- [Ch] Sh.-P. Chan, Relative Lubin-Tate formal groups and Galois module structure. Manuscripta Math.39 (1992), 109-113. Zbl0755.11037MR1156220
- [CL] Sh.-P. Chan, C.-H. Lim, The associated orders of rings of integers in Lubin-Tate division fields over the p-adic number field. Illinois J. Math.39 (1995), 30-38. Zbl0816.11061MR1299647
- [CS] S.U. Chase, M.E. Sweedler, Hopf algebras and Galois theory. Springer Lecture Notes in Mathematics 97, Springer-Verlag, 1969. Zbl0197.01403MR260724
- [CH] L.N. Childs, S. Hurley, Tameness and local normal bases for objects of finite Hopf algebras. Trans. Amer. Math. Soc.298 (1986), 763-778. Zbl0609.16005MR860392
- [dS] E. deShalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Math. Vol. 3, Academic Press, 1987. Zbl0674.12004MR917944
- [R] I. Reiner, Maximal orders., Academic Press, 1975. Zbl0305.16001MR1972204
- [S] R. Schertz, Galoismodulstruktur und Elliptische Funktionen. J. Number Theory39 (1991), 285-326. Zbl0739.11052MR1133558
- [ST] A. Srivastav, M.J. Taylor, Elliptic curves with complez multiplication and Galois module structure. Invent. Math.99 (1990), 165-184. Zbl0705.14031MR1029394
- [T1] M.J. Taylor, Hopf Structure and the Kummer Theory of Formal Groups. J. Reine Angew. Math.375/376 (1987), 1-11. Zbl0609.12015MR882287
- [T2] M.J. Taylor, Mordell-Weil Groups and the Galois Module Structure of Rings of Integers. Illinois J. Math.32 (1988), 428-452. Zbl0631.14033MR947037
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.