Hopf-Galois module structure of tame biquadratic extensions
- [1] School of Computing and Mathematics Keele University, ST5 5BG, UK
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 173-199
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topTruman, Paul J.. "Hopf-Galois module structure of tame biquadratic extensions." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 173-199. <http://eudml.org/doc/251057>.
@article{Truman2012,
abstract = {In [14] we studied the nonclassical Hopf-Galois module structure of rings of algebraic integers in some tamely ramified extensions of local and global fields, and proved a partial generalisation of Noether’s theorem to this setting. In this paper we consider tame Galois extensions of number fields $ L/K $ with group $ G \cong C_\{2\} \times C_\{2\} $ and study in detail the local and global structure of the ring of integers $ \{\mathfrak\{O\}\}_\{L\}$ as a module over its associated order $ \{\mathfrak\{A\}\}_\{H\}$ in each of the Hopf algebras $ H $ giving a nonclassical Hopf-Galois structure on the extension. The results of [14] imply that $ \{\mathfrak\{O\}\}_\{L\}$ is locally free over each $ \{\mathfrak\{A\}\}_\{H\}$, and we derive necessary and sufficient conditions for $ \{\mathfrak\{O\}\}_\{L\}$ to be free over each $ \{\mathfrak\{A\}\}_\{H\}$. In particular, we consider the case $ K=\mathbb\{Q\}$, and construct extensions exhibiting a variety of global behaviour, which implies that the direct analogue of the Hilbert-Speiser theorem does not hold.},
affiliation = {School of Computing and Mathematics Keele University, ST5 5BG, UK},
author = {Truman, Paul J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {173-199},
publisher = {Société Arithmétique de Bordeaux},
title = {Hopf-Galois module structure of tame biquadratic extensions},
url = {http://eudml.org/doc/251057},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Truman, Paul J.
TI - Hopf-Galois module structure of tame biquadratic extensions
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 173
EP - 199
AB - In [14] we studied the nonclassical Hopf-Galois module structure of rings of algebraic integers in some tamely ramified extensions of local and global fields, and proved a partial generalisation of Noether’s theorem to this setting. In this paper we consider tame Galois extensions of number fields $ L/K $ with group $ G \cong C_{2} \times C_{2} $ and study in detail the local and global structure of the ring of integers $ {\mathfrak{O}}_{L}$ as a module over its associated order $ {\mathfrak{A}}_{H}$ in each of the Hopf algebras $ H $ giving a nonclassical Hopf-Galois structure on the extension. The results of [14] imply that $ {\mathfrak{O}}_{L}$ is locally free over each $ {\mathfrak{A}}_{H}$, and we derive necessary and sufficient conditions for $ {\mathfrak{O}}_{L}$ to be free over each $ {\mathfrak{A}}_{H}$. In particular, we consider the case $ K=\mathbb{Q}$, and construct extensions exhibiting a variety of global behaviour, which implies that the direct analogue of the Hilbert-Speiser theorem does not hold.
LA - eng
UR - http://eudml.org/doc/251057
ER -
References
top- Bley, W. and Boltje, R., Lubin-Tate formal groups and module structure over Hopf orders. J. Theor. Nombres Bordeaux 11 (1999), 269–305. Zbl0979.11053MR1745880
- Byott, N. P. and Sodaïgui, B., Galois module structure for dihedral extensions of degree 8: Realizable classes over the group ring. Journal of Number Theory 112 (2005), 1–19. Zbl1073.11068MR2131138
- Byott, N. P., Uniqueness of Hopf-Galois structure for separable field extensions. Communications in Algebra 24(10) (1996), 3217–3228, corrigendum ibid 3705. Zbl0878.12001MR1402555
- Byott, N. P., Galois structure of ideals in wildly ramified abelian -extensions of a -adic field, and some applications". Journal de Theorie des Nombres de Bordeaux 9 (1997), 201–219. Zbl0889.11040MR1469668
- Byott, N. P., Integral Hopf-Galois Structures on Degree Extensions of adic Fields. Journal of Algebra 248 (2002), 334–365. Zbl0992.11065MR1879021
- Childs, L. N., Taming wild extensions with Hopf algebras. Trans. Amer. Math. Soc. 304 (1987), 111–140. Zbl0632.12013MR906809
- Childs, L. N., Taming Wild Extensions: Hopf Algebras and local Galois module theory. American Mathematical Society, 2000. Zbl0944.11038MR1767499
- Curtis, C. W. and Reiner, I., Methods of Representation Theory with Applications to Finite Groups and Orders (Volume 1). Wiley, 1981. Zbl0616.20001MR632548
- Curtis, C. W. and Reiner, I., Methods of Representation Theory with Applications to Finite Groups and Orders (Volume 2). Wiley, 1981. Zbl0616.20001MR632548
- Fröhlich, A., Galois Module Structure of Algebraic Integers. Springer, 1983. Zbl0501.12012MR717033
- Fröhlich, A. and Taylor, M. J., Algebraic Number Theory. Cambridge University Press, 1991. Zbl0744.11001MR1215934
- Hilbert, D., Die Theorie der algebraischen Zahlen. Gesammelte Abhandlungen, 1965.
- Neukirch, J., Algebraic Number Theory. Springer, 1999. Zbl0956.11021MR1697859
- Truman, P. J., Towards a Generalised Noether Theorem for Nonclassical Hopf-Galois Structures. New York Journal of Mathematics 17 (2011), 799–810. Zbl1250.11098
- Waterhouse, W.C., Introduction to Affine Group Schemes. Springer, 1997. Zbl0442.14017MR547117
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.