An analogue of Pfister's local-global principle in the burnside ring
Journal de théorie des nombres de Bordeaux (1999)
- Volume: 11, Issue: 1, page 31-44
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topEpkenhans, Martin. "An analogue of Pfister's local-global principle in the burnside ring." Journal de théorie des nombres de Bordeaux 11.1 (1999): 31-44. <http://eudml.org/doc/248342>.
@article{Epkenhans1999,
abstract = {Let $N/K$ be a Galois extension with Galois group $\mathcal \{G\}$. We study the set $\mathcal \{T\}(\mathcal \{G\})$ of $\mathbb \{Z\}$-linear combinations of characters in the Burnside ring $\mathcal \{B\}(\mathcal \{G\})$ which give rise to $\mathbb \{Z\}$-linear combinations of trace forms of subextensions of $N/K$ which are trivial in the Witt ring W$(K)$ of $K$. In particular, we prove that the torsion subgroup of $\mathcal \{B\}(\mathcal \{G\}) / \mathcal \{T\}(\mathcal \{G\})$ coincides with the kernel of the total signature homomorphism.},
author = {Epkenhans, Martin},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {trace forms; Burnside ring; Witt ring},
language = {eng},
number = {1},
pages = {31-44},
publisher = {Université Bordeaux I},
title = {An analogue of Pfister's local-global principle in the burnside ring},
url = {http://eudml.org/doc/248342},
volume = {11},
year = {1999},
}
TY - JOUR
AU - Epkenhans, Martin
TI - An analogue of Pfister's local-global principle in the burnside ring
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 31
EP - 44
AB - Let $N/K$ be a Galois extension with Galois group $\mathcal {G}$. We study the set $\mathcal {T}(\mathcal {G})$ of $\mathbb {Z}$-linear combinations of characters in the Burnside ring $\mathcal {B}(\mathcal {G})$ which give rise to $\mathbb {Z}$-linear combinations of trace forms of subextensions of $N/K$ which are trivial in the Witt ring W$(K)$ of $K$. In particular, we prove that the torsion subgroup of $\mathcal {B}(\mathcal {G}) / \mathcal {T}(\mathcal {G})$ coincides with the kernel of the total signature homomorphism.
LA - eng
KW - trace forms; Burnside ring; Witt ring
UR - http://eudml.org/doc/248342
ER -
References
top- [1] P. Beaulieu and T. Palfrey.The Galois number. Math. Ann.309 (1997), 81-96. Zbl0885.11027MR1467647
- [2] P.E. Conner and R. Perlis.A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore, (1984). Zbl0551.10017MR761569
- [3] C. Drees, M. Epkenhans, and M. Krüskemper.On the computation of the trace form of some Galois extensions. J. Algebra, 192 (1997), 209-234. Zbl0873.11027MR1449959
- [4] M. Epkenhans and M. Krüskemper.On Trace Forms of étale Algebras and Field Extensions. Math. Z.217 (1994), 421-434. Zbl0821.11024MR1306669
- [5] W. Scharlau.Quadratic and Hermitian Forms. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985). Zbl0584.10010MR770063
- [6] T.A. Springer.On the equivalence of quadratic forms. Proc. Acad. Amsterdam, 62 (1959), 241-253. Zbl0087.03501MR108468
- [7] O. Taussky.The Discriminant Matrices of an Algebraic Number Field. J. London Math. Soc.43 (1968), 152-154. Zbl0155.37903MR228473
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.