An analogue of Pfister's local-global principle in the burnside ring

Martin Epkenhans

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 1, page 31-44
  • ISSN: 1246-7405

Abstract

top
Let N / K be a Galois extension with Galois group 𝒢 . We study the set 𝒯 ( 𝒢 ) of -linear combinations of characters in the Burnside ring ( 𝒢 ) which give rise to -linear combinations of trace forms of subextensions of N / K which are trivial in the Witt ring W ( K ) of K . In particular, we prove that the torsion subgroup of ( 𝒢 ) / 𝒯 ( 𝒢 ) coincides with the kernel of the total signature homomorphism.

How to cite

top

Epkenhans, Martin. "An analogue of Pfister's local-global principle in the burnside ring." Journal de théorie des nombres de Bordeaux 11.1 (1999): 31-44. <http://eudml.org/doc/248342>.

@article{Epkenhans1999,
abstract = {Let $N/K$ be a Galois extension with Galois group $\mathcal \{G\}$. We study the set $\mathcal \{T\}(\mathcal \{G\})$ of $\mathbb \{Z\}$-linear combinations of characters in the Burnside ring $\mathcal \{B\}(\mathcal \{G\})$ which give rise to $\mathbb \{Z\}$-linear combinations of trace forms of subextensions of $N/K$ which are trivial in the Witt ring W$(K)$ of $K$. In particular, we prove that the torsion subgroup of $\mathcal \{B\}(\mathcal \{G\}) / \mathcal \{T\}(\mathcal \{G\})$ coincides with the kernel of the total signature homomorphism.},
author = {Epkenhans, Martin},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {trace forms; Burnside ring; Witt ring},
language = {eng},
number = {1},
pages = {31-44},
publisher = {Université Bordeaux I},
title = {An analogue of Pfister's local-global principle in the burnside ring},
url = {http://eudml.org/doc/248342},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Epkenhans, Martin
TI - An analogue of Pfister's local-global principle in the burnside ring
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 31
EP - 44
AB - Let $N/K$ be a Galois extension with Galois group $\mathcal {G}$. We study the set $\mathcal {T}(\mathcal {G})$ of $\mathbb {Z}$-linear combinations of characters in the Burnside ring $\mathcal {B}(\mathcal {G})$ which give rise to $\mathbb {Z}$-linear combinations of trace forms of subextensions of $N/K$ which are trivial in the Witt ring W$(K)$ of $K$. In particular, we prove that the torsion subgroup of $\mathcal {B}(\mathcal {G}) / \mathcal {T}(\mathcal {G})$ coincides with the kernel of the total signature homomorphism.
LA - eng
KW - trace forms; Burnside ring; Witt ring
UR - http://eudml.org/doc/248342
ER -

References

top
  1. [1] P. Beaulieu and T. Palfrey.The Galois number. Math. Ann.309 (1997), 81-96. Zbl0885.11027MR1467647
  2. [2] P.E. Conner and R. Perlis.A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore, (1984). Zbl0551.10017MR761569
  3. [3] C. Drees, M. Epkenhans, and M. Krüskemper.On the computation of the trace form of some Galois extensions. J. Algebra, 192 (1997), 209-234. Zbl0873.11027MR1449959
  4. [4] M. Epkenhans and M. Krüskemper.On Trace Forms of étale Algebras and Field Extensions. Math. Z.217 (1994), 421-434. Zbl0821.11024MR1306669
  5. [5] W. Scharlau.Quadratic and Hermitian Forms. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985). Zbl0584.10010MR770063
  6. [6] T.A. Springer.On the equivalence of quadratic forms. Proc. Acad. Amsterdam, 62 (1959), 241-253. Zbl0087.03501MR108468
  7. [7] O. Taussky.The Discriminant Matrices of an Algebraic Number Field. J. London Math. Soc.43 (1968), 152-154. Zbl0155.37903MR228473

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.