On the annihilating ideal for trace forms

Martin Epkenhans

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 115-124
  • ISSN: 1246-7405

Abstract

top
We give several examples of classes of trace forms for which the ideal of annihilating polynomials is principal. We prove, that in general, the annihilating ideal is not a principal ideal.

How to cite

top

Epkenhans, Martin. "On the annihilating ideal for trace forms." Journal de théorie des nombres de Bordeaux 15.1 (2003): 115-124. <http://eudml.org/doc/249084>.

@article{Epkenhans2003,
abstract = {We give several examples of classes of trace forms for which the ideal of annihilating polynomials is principal. We prove, that in general, the annihilating ideal is not a principal ideal.},
author = {Epkenhans, Martin},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {trace forms; annihilating ideals},
language = {eng},
number = {1},
pages = {115-124},
publisher = {Université Bordeaux I},
title = {On the annihilating ideal for trace forms},
url = {http://eudml.org/doc/249084},
volume = {15},
year = {2003},
}

TY - JOUR
AU - Epkenhans, Martin
TI - On the annihilating ideal for trace forms
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 115
EP - 124
AB - We give several examples of classes of trace forms for which the ideal of annihilating polynomials is principal. We prove, that in general, the annihilating ideal is not a principal ideal.
LA - eng
KW - trace forms; annihilating ideals
UR - http://eudml.org/doc/249084
ER -

References

top
  1. [1] P. Beaulieu, T. Palfrey, The Galois number. Math. Ann.309 (1997), 81-96. Zbl0885.11027MR1467647
  2. [2] P.E. Conner, A proof of the conjecture concerning algebraic Witt classes. unpublished, 1987. 
  3. [3] P.E. Conner, R. Perlis, A survey of trace forms of algebraic number fields. World Scientific, Singapore, 1984. Zbl0551.10017MR761569
  4. [4] C.W. Curtis, I. Reiner, Methods of representation theory, volume II. John Wiley and Sons, New York, 1987. Zbl0616.20001MR892316
  5. [5] A.W.M. Dress, Notes on the theory of representations of finite groups. Unpublished notes, 1971. 
  6. [6] M. Epkenhans, On vanishing theorems for trace forms. Acta Math. Inform. Univ. Ostraviensis6 (1998), 69-85. Zbl1024.11021MR1822517
  7. [7] M. Epkenhans, An analogue of Pfister's local-global principle in the Burnside ring. J. Théor. Nombres Bordeaux11 (1999), 31-44. Zbl0964.11021MR1730431
  8. [8] M. Epkenhans, On trace forms and the Burnside ring. In Quadratic forms and their applications, ed. by Eva Bayer-Fluckiger, David Lewis and Andrew Ranicki. Contemporary Math., volume 272, pages 39-56, AMS, Providence, RI, 2000. Zbl0987.11025MR1803360
  9. [9] M. Epkenhans, O. Gerstengarbe, On the Galois number and minimal degree of doubly transitive groups. Comm. Algebra28 (2000), 4889-4900. Zbl0985.20001MR1779881
  10. [10] B. Huppert, Endliche Gruppen I. Die Grundlagen der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, 1967. Zbl0217.07201MR224703
  11. [11] D.W. Lewis, Witt rings as integral rings. Invent. Math.90 (1987), 631-633. Zbl0629.10017MR914852
  12. [12] D.W. Lewis, S. Mcgarraghy, Annihilating polynomials, étale algebras, trace forms and the Galois number. Arch. Math.75 (2000), 116-120. Zbl0957.11021MR1767167
  13. [13] O. Taussky, The discriminant matrices of an algebraic number field. J. London Math. Soc.43 (1968), 152-154. Zbl0155.37903MR228473
  14. [14] A.D. Thomas, G.V. Wood, Group tables. Shiva Publishing Limited, 1980. Zbl0441.20001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.