Stochastic parallel transport and connections of H 2 M

Pedro Catuogno

Archivum Mathematicum (1999)

  • Volume: 035, Issue: 4, page 305-315
  • ISSN: 0044-8753

Abstract

top
In this paper we prove that there is a bijective correspondence between connections of H 2 M , the principal bundle of the second order frames of M , and stochastic parallel transport in the tangent space of M . We construct in a direct geometric way a prolongation of connections without torsion of M to connections of H 2 M . We interpret such prolongation in terms of stochastic calculus.

How to cite

top

Catuogno, Pedro. "Stochastic parallel transport and connections of $H^2M$." Archivum Mathematicum 035.4 (1999): 305-315. <http://eudml.org/doc/248363>.

@article{Catuogno1999,
abstract = {In this paper we prove that there is a bijective correspondence between connections of $H^2M$, the principal bundle of the second order frames of $M$, and stochastic parallel transport in the tangent space of $M$. We construct in a direct geometric way a prolongation of connections without torsion of $M$ to connections of $H^2M$. We interpret such prolongation in terms of stochastic calculus.},
author = {Catuogno, Pedro},
journal = {Archivum Mathematicum},
keywords = {second order geometry; stochastic calculus; connections; parallel transport; second order frame bundle; stochastic calculus; connection; parallel transport},
language = {eng},
number = {4},
pages = {305-315},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stochastic parallel transport and connections of $H^2M$},
url = {http://eudml.org/doc/248363},
volume = {035},
year = {1999},
}

TY - JOUR
AU - Catuogno, Pedro
TI - Stochastic parallel transport and connections of $H^2M$
JO - Archivum Mathematicum
PY - 1999
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 035
IS - 4
SP - 305
EP - 315
AB - In this paper we prove that there is a bijective correspondence between connections of $H^2M$, the principal bundle of the second order frames of $M$, and stochastic parallel transport in the tangent space of $M$. We construct in a direct geometric way a prolongation of connections without torsion of $M$ to connections of $H^2M$. We interpret such prolongation in terms of stochastic calculus.
LA - eng
KW - second order geometry; stochastic calculus; connections; parallel transport; second order frame bundle; stochastic calculus; connection; parallel transport
UR - http://eudml.org/doc/248363
ER -

References

top
  1. Bismut J. M., Mécanique Aléatorie, Lecture Notes in Mathematics 866, Springer 1981. (1981) MR0629977
  2. Catuogno P. J., Second Order Connections and Stochastic Calculus, Relatorio de Pesquisa. Unicamp, 1995. (1995) 
  3. Cordero L. A., Dobson C. T. J., de León M., Differential Geometry of Frame Bundles, Kluwer Acad. Pub. 1988. (1988) 
  4. Emery M., Stochastic Calculus in Manifolds, Springer-Verlag, 1989. (1989) Zbl0697.60060MR1030543
  5. Emery M., On Two Transfer Principles in Stochastic Differential Geometry, Séminaire de Probabilités XXIV. Lecture Notes in Mathematics 1426, Springer 1990. (1990) Zbl0704.60066MR1071558
  6. Gancarzewicz J., Connections of Order r, Ann. Pol. Math. 34, 70–83, 1977. (1977) Zbl0347.53008MR0440471
  7. Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Processes, North-Holland 1981. (1981) Zbl0495.60005MR1011252
  8. Itô K., Stochastic Parallel Displacement, Probabilistic Methods in Differential Equations. Lecture Notes in Mathematics 451, Springer 1975. (1975) Zbl0308.60027MR0394905
  9. Janyška J., Kolář I., On the Connections Naturally Induced on the Second Order Frame Bundle, Archivum Mathematicum (Brno) 22, 21–28, 1986. (1986) Zbl0628.53034MR0868117
  10. Kobayashi S., Canonical Forms on Frame Bundles of Higher Order Contact, Proc. Symp. Pure Math. 3, 186–193, 1961. (193,) MR0126810
  11. Kobayashi S., Nomizu K., Foundations of Differential Geometry, Interscience, 1 (1963), 2 (1968). (1963) Zbl0119.37502MR0152974
  12. Kolář I., On some Operations with Connections, Math. Nachr. 69, 297–306, 1975. (1975) Zbl0318.53034MR0391157
  13. Meyer P. A., Géométrie Différentielle Stochastique, Séminaire de Probabilités XV. Lecture Notes in Mathematics 851, Springer 1981. (1981) 
  14. Meyer P. A., Géométrie Différentielle Stochastique (bis), Séminaire de Probabilités XVI. Lecture Notes in Mathematics 921, Springer 1982. (1982) Zbl0539.58039MR0658725
  15. Schwartz L., Géométrie Différentielle du 2 e ordre, Semimartingales et Équations Différentielle Stochastiques sur une Variété Différentielle, Séminaire de Probabilités XVI. Lecture Notes in Mathematics 921, Springer 1982. (1982) MR0658722
  16. Shigekawa I., On Stochastic Horizontal Lifts, Z. Wahrscheinlichkeitsheorie verw. Geviete 59, 211–221, 1982. (1982) Zbl0487.60056MR0650613

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.