Géométrie différentielle stochastique, II

Paul-André Meyer

Séminaire de probabilités de Strasbourg (1982)

  • Volume: S16, page 165-207

How to cite


Meyer, Paul-André. "Géométrie différentielle stochastique, II." Séminaire de probabilités de Strasbourg S16 (1982): 165-207. <http://eudml.org/doc/113420>.

author = {Meyer, Paul-André},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {stochastic differential geometry; stochastic parallel transport; stochastic mechanics; semimartingales},
language = {fre},
pages = {165-207},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Géométrie différentielle stochastique, II},
url = {http://eudml.org/doc/113420},
volume = {S16},
year = {1982},

AU - Meyer, Paul-André
TI - Géométrie différentielle stochastique, II
JO - Séminaire de probabilités de Strasbourg
PY - 1982
PB - Springer - Lecture Notes in Mathematics
VL - S16
SP - 165
EP - 207
LA - fre
KW - stochastic differential geometry; stochastic parallel transport; stochastic mechanics; semimartingales
UR - http://eudml.org/doc/113420
ER -


  1. [1]. Bismut ( J.M.). Mécanique Aléatoire. L.N. in M.866, Springer1981 Zbl0457.60002
  2. [2]. Dankel ( Th.G.). Mechanics on manifolds and the incorporation of spin into Nelson's stochastic mechanics. Arch. Rat. Mech. Anal.37, 1971, p. 192-221. Zbl0199.28201MR263375
  3. [3]. Dohrn ( D.) et Guerra ( F.). Nelson's stochastic mechanics on Riemannian manifolds. Lett. a' Nuovo Cimento.22, 1978, p. 121-127. MR483876
  4. [4]. Dynkin ( E.B.). Diffusions of Tensors. DAN9, 1968, p. 532-535 ( éd. anglaise ). Zbl0188.27002MR234523
  5. [5]. Ikeda ( N.) et Watanabe ( S.). Diffusion processes and stochastic differential equations. North-Holland1981. Zbl0495.60005MR631478
  6. [6]. Ito ( K.). The brownian motion and tensor fields on Riemannian manifolds. Proc. Int. Congress Math. Stockholm1962, p. 536. Zbl0116.36105MR176500
  7. [8]. Nelson ( E.). Dynamical theories of Brownian motion. Princeton1967) Zbl0165.58502MR214150
  8. [7]. Nagasawa ( M.). Segregation of a population in an environment. J. Math. Biology9, 1980, p. 213-235. Zbl0447.92017MR661428
  9. [9]. Yano ( K.) et Ishihara ( S.). Tangent and cotangent bundles. New-York, Marcel Dekker1973. Zbl0262.53024MR350650
  10. [10]. Yasue ( K.). Stochastic calculus of variations. J. Funct.An.41, 1981, p. 327-340 ( référence ajoutée, sur la méc. de Nelson ). Zbl0482.60063MR619956

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.