On Asplund functions

Wee-Kee Tang

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 1, page 121-132
  • ISSN: 0010-2628

Abstract

top
A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.

How to cite

top

Tang, Wee-Kee. "On Asplund functions." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 121-132. <http://eudml.org/doc/248382>.

@article{Tang1999,
abstract = {A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.},
author = {Tang, Wee-Kee},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Fréchet differentiability; convex functions; Asplund spaces; Fréchet differentiability; convex function; Asplund space},
language = {eng},
number = {1},
pages = {121-132},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Asplund functions},
url = {http://eudml.org/doc/248382},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Tang, Wee-Kee
TI - On Asplund functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 121
EP - 132
AB - A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.
LA - eng
KW - Fréchet differentiability; convex functions; Asplund spaces; Fréchet differentiability; convex function; Asplund space
UR - http://eudml.org/doc/248382
ER -

References

top
  1. Contreras M.D., Payá R., On upper semicontinuity of duality mappings, Proc. Amer. Math. Soc. 112 (1994), 451-459. (1994) MR1215199
  2. Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monograph and Survey in Pure and Applied Mathematics Zbl0782.46019MR1211634
  3. Dulst D.V., Namioka I., A note on trees in conjugate Banach spaces, Indag. Math. 46 (1984), 7-10. (1984) Zbl0537.46025MR0748973
  4. Namioka I., Phelps R.R., Banach spaces which are Asplund spaces, Duke Math J. 42 (1975), 735-749. (1975) Zbl0332.46013MR0390721
  5. Fabian M., On projectional resolution of identity on the duals of certain Banach spaces, Bull. Austral. Math. Soc. 35 (1987), 363-371. (1987) MR0888895
  6. Godefroy G., Some applications of Simons' inequality, Sem. Funct. Anal., University of Murcia, to appear. MR1767034
  7. Giles J.R., On the characterisation of Asplund spaces, J. Austral. Math. Soc. (Ser. A) 32 (1982), 134-144. (1982) Zbl0486.46019MR0643437
  8. Giles J.R., Gregory D.A., Sims B., Geometric implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-109. (1978) MR0526669
  9. Giles J.R., Sciffer S., Separable determination of Fréchet differentiability of convex functions, Bull. Austral. Math. Soc. 52 (1995), 161-167. (1995) Zbl0839.46036MR1344269
  10. Jayne J.E., Namioka I., Rogers C.A., σ -fragmentable Banach spaces, Mathematika 39 (1992), 161-188. (1992) Zbl0761.46009MR1176478
  11. Phelps R.R., Convex Functions, Monotone Operators and Differentiability, Lect. Notes. in Math., Springer-Verlag 1364 (1993) (Second Edition). Zbl0921.46039MR1238715
  12. Preiss D., Gâteaux differentiable functions are somewhere Fréchet differentiable, Rend. Cir. Mat. Pal. 33 (1984), 122-133. (1984) Zbl0573.46024MR0743214
  13. Preiss D., Zajíček D., Fréchet differentiability of convex functions in Banach space with separable duals, Proc. Amer. Math. Soc. 91 (1984), 202-204. (1984) MR0740171
  14. Simons S., A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703-708. (1972) Zbl0237.46012MR0312193
  15. Stegall C., The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213-223. (1975) Zbl0318.46056MR0374381
  16. Tang W.-K., On Fréchet differentiability of convex functions on Banach spaces, Comment. Math. Univ. Carolinae 36 (1995), 249-253. (1995) Zbl0831.46045MR1357526
  17. Tang W.-K., Sets of differentials and smoothness of convex functions, Bull. Austral. Math. Soc. 52 (1995), 91-96. (1995) Zbl0839.46008MR1344263
  18. Yost D., Asplund spaces for beginners, Acta Univ. Carolinae 34 (1993), 159-177. (1993) Zbl0815.46022MR1282979

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.