The Tamano Theorem in A P

David Buhagiar

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 4, page 755-770
  • ISSN: 0010-2628

Abstract

top
In this paper we continue with the study of paracompact maps introduced in [1]. We give two external characterizations for paracompact maps including a characterization analogous to The Tamano Theorem in the category 𝒯 O P (of topological spaces and continuous maps as morphisms). A necessary and sufficient condition for the Tychonoff product of a closed map and a compact map to be closed is also given.

How to cite

top

Buhagiar, David. "The Tamano Theorem in $\mathcal {M}AP$." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 755-770. <http://eudml.org/doc/248384>.

@article{Buhagiar1999,
abstract = {In this paper we continue with the study of paracompact maps introduced in [1]. We give two external characterizations for paracompact maps including a characterization analogous to The Tamano Theorem in the category $\mathcal \{T\}OP$ (of topological spaces and continuous maps as morphisms). A necessary and sufficient condition for the Tychonoff product of a closed map and a compact map to be closed is also given.},
author = {Buhagiar, David},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fibrewise topology; continuous map; closed map; paracompact map; perfect map; normal map; compactification of a map},
language = {eng},
number = {4},
pages = {755-770},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Tamano Theorem in $\mathcal \{M\}AP$},
url = {http://eudml.org/doc/248384},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Buhagiar, David
TI - The Tamano Theorem in $\mathcal {M}AP$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 755
EP - 770
AB - In this paper we continue with the study of paracompact maps introduced in [1]. We give two external characterizations for paracompact maps including a characterization analogous to The Tamano Theorem in the category $\mathcal {T}OP$ (of topological spaces and continuous maps as morphisms). A necessary and sufficient condition for the Tychonoff product of a closed map and a compact map to be closed is also given.
LA - eng
KW - fibrewise topology; continuous map; closed map; paracompact map; perfect map; normal map; compactification of a map
UR - http://eudml.org/doc/248384
ER -

References

top
  1. Buhagiar D., Paracompact maps, Questions Answers Gen. Topology 15 (1997), 2 203-223. (1997) Zbl0997.54012MR1472184
  2. Buhagiar D., The category ℳ𝒜𝒫 , submitted for publication, 1998. 
  3. Buhagiar D., Miwa T., Covering properties on maps, Questions Answers Gen. Topology 16 (1998), 1 53-66. (1998) Zbl0997.54033MR1614753
  4. Buhagiar D., Miwa T., Pasynkov B.A., On metrizable type ( M T - ) maps and spaces, to appear in Topology Appl. Zbl0953.54017MR1701238
  5. Dieudonné J., Une généralisation des espaces compacts, J. de Math. Pures et Appl. 23 (1944), 65-76. (1944) MR0013297
  6. Engelking R., General Topology, revised ed., Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  7. James I.M., Spaces, Bull. London Math. Soc. 18 (1986), 529-559. (1986) Zbl0647.05005MR0859946
  8. James I.M., Fibrewise Topology, Cambridge Univ. Press, Cambridge, 1989. Zbl1147.55001MR1010230
  9. Johnstone P.T., The Gleason cover of a topos II, J. Pure Appl. Algebra 22 (1981), 229-247. (1981) Zbl0445.18005MR0629332
  10. Johnstone P.T., Wallman compactification of locales, Houston J. Math. 10 (1984), 201-206. (1984) Zbl0549.54018MR0744904
  11. Künzi H.P.A., Pasynkov B.A., Tychonoff compactifications and R-completions of mappings and rings of continuous functions, Categorical Topology (L'Aquila, 1994), Kluwer Acad. Publ., Dordrecht, 1996, pp.175-201. MR1412584
  12. Lever D., Continuous families: Categorical aspects, Cahiers de topologie et géométrie différentielle 24 (1983), 393-432. (1983) Zbl0535.18004MR0749470
  13. Lever D., Relative topology, Categorical Topology, Proc. Conference Toledo, Ohio, 1983, Heldermann, Berlin, 1984. Zbl0555.18006MR0785023
  14. Morita K., Paracompactness and product spaces, Fund. Math. 50 (1962), 223-236. (1962) Zbl0099.17401MR0132525
  15. Pasynkov B.A., On extension to mappings of certain notions and assertions concerning spaces (in Russian), Mappings and Functors, Izdat. MGU, Moscow, 1984, pp.72-102. MR0791256
  16. Pasynkov B.A., Elements of the general topology of continuous maps (in Russian), On Compactness and Completeness Properties of Topological Spaces, ``FAN'' Acad. of Science of the Uzbek. Rep., Tashkent, 1994, pp.50-120. 
  17. Preuss G., Theory of topological structures (an approach to categorical topology), Mathematics and its Applications, D.Reidel Publishing Company, Dordrecht, Holland, 1987. Zbl0649.54001MR0937052
  18. Tamano H., On paracompactness, Pacific J. Math. 10 (1960), 1043-1047. (1960) Zbl0094.35403MR0124876
  19. Tamano H., On compactifications, J. Math. Kyoto Univ. 1 (1962), 161-193. (1962) Zbl0106.15601MR0142096
  20. Ulyanov V.M., On compact extensions of countable character and absolutes (in Russian), Math. Sb. 98 (1975), 2 223-254. (1975) MR0394534
  21. Vainstein I.A., On closed maps of metric spaces (in Russian), Doklady Akad. Nauk SSSR 57 (1947), 319-321. (1947) MR0022067
  22. Whyburn G.T., A unified space for mappings, Trans. Amer. Math. Soc. 74 (1953), 2 344-350. (1953) Zbl0053.12303MR0052762
  23. Whyburn G.T., Compactification of mappings, Math. Ann. 166 (1966), 1 168-174. (1966) Zbl0141.20505MR0200905

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.