Continuous families : categorical aspects

David B. Lever

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1983)

  • Volume: 24, Issue: 4, page 393-432
  • ISSN: 1245-530X

How to cite

top

Lever, David B.. "Continuous families : categorical aspects." Cahiers de Topologie et Géométrie Différentielle Catégoriques 24.4 (1983): 393-432. <http://eudml.org/doc/91337>.

@article{Lever1983,
author = {Lever, David B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {sheaves; continuous families; Grothendieck topos of continuous functors; Top-indexed category of sheaves of sets; category of sets; well-powered; cowell-powered; locally small; topological category; presheaf category; Top-indexed functors},
language = {eng},
number = {4},
pages = {393-432},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Continuous families : categorical aspects},
url = {http://eudml.org/doc/91337},
volume = {24},
year = {1983},
}

TY - JOUR
AU - Lever, David B.
TI - Continuous families : categorical aspects
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1983
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 24
IS - 4
SP - 393
EP - 432
LA - eng
KW - sheaves; continuous families; Grothendieck topos of continuous functors; Top-indexed category of sheaves of sets; category of sets; well-powered; cowell-powered; locally small; topological category; presheaf category; Top-indexed functors
UR - http://eudml.org/doc/91337
ER -

References

top
  1. 1 Adams, J.F., Infinite loop spaces, Ann. of Math. studies90, Princeton Univ. Press (1978). Zbl0398.55008MR505692
  2. 2 Artin, M., Grothendieck, A., & Verdier, J.L., Exposés I à IV, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math.269, Springer (1972). Zbl0234.00007MR354653
  3. 3 Benabou, J., Théories relatives à un corpus, C. R. Acad. Sc. Paris281A (1975), 833. Zbl0349.18005MR393180
  4. 4 Bourbaki, N., General Topology, I, Hermann, Paris. 
  5. 5 Diaconescu, R., Change of base for toposes with generators, J. Pure and ApliedAlgebra6 (1975), 191-218. Zbl0353.18002MR379627
  6. 6 Ehresmann, C., Catégories topologiques et catégories différentiables, Coll. Géom. Diff. Globale Bruxelles1959, dans « Charles Ehresmann: Œuvres complètes et commentées», Part I, Amiens1983. Zbl0205.28202
  7. 7 Ehresmann, C., Catégories topologiques I- III, Indig. Math.28-1 (1966) dans Charles Ehresmann: Oeuvres complètes et commentées, Part II- 2, 1982. Zbl0163.26802MR215766
  8. 8 Gray, J.W., Fragments of the history of sheaf theory, SpringerLecture Notes in Math. 753 (1979), 1- 79. Zbl0436.55002MR555539
  9. 9 Gunning, R.C., Lecture notes on Riemann surfaces, Princeton University Press, 1966. Zbl0175.36801MR207977
  10. 10 Kennison, J.F., Separable algebraic closure in a topos, To appear. Zbl0486.18010MR647577
  11. 11 Lawvere, F.W., Variable quantities and variable structures in topoi, in A collection of papers in honor of Samuel Eilenberg, Academic Press, 1976. Zbl0353.02043MR419232
  12. 12 Lever, D.B., Precategory objects of toposes, To appear. Zbl0569.18006MR772160
  13. 13 Milnor, J., & Stasheff, J., Characteristic classes, Princeton Univ. Press and University of Tokyo, 1974. Zbl0298.57008MR440554
  14. 14 Niefield, S.B., Cartesianness: topological spaces, uniform spaces, and affine schemes, J. Pure and AppliedAlgebra23 (1982), 147-167. Zbl0475.18011MR639571
  15. 15 Pare, R., Indexed categories and generated topologies, J. Pure and Applied Algebra19 (1980), 385- 400. Zbl0444.18003MR593260
  16. 16 Pare, R., & Schumacher, D., Abstract families and the adjoint functor theorem, Lecture Notes in Math.661, Springer (1978), 1-125. Zbl0389.18002MR514193
  17. 17 Spanier, E., Quasi-topologies, Duke Math. J.30 (1963), 1- 14. Zbl0114.38702MR144300
  18. 18 Tierney, M., Sheaf theory and the continuum hypothesi s, Lecture Notes in Math.274, S pringer (1974), 13 - 42. Zbl0244.18005MR373888

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.