The local solution of a parabolic-elliptic equation with a nonlinear Neumann boundary condition
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 1, page 13-38
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPluschke, Volker, and Weber, Frank. "The local solution of a parabolic-elliptic equation with a nonlinear Neumann boundary condition." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 13-38. <http://eudml.org/doc/248386>.
@article{Pluschke1999,
abstract = {We investigate a parabolic-elliptic problem, where the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. The linear equation is supplemented by a nonlinear Neumann boundary condition $-\partial u/\partial \nu _A = g(\cdot ,\cdot ,u)$ with a locally defined, $L_r$-bounded function $g(t,\cdot ,\xi )$. We prove the existence of a local weak solution to the problem by means of the Rothe method. A uniform a priori estimate for the Rothe approximations in $L_\{\infty \}$, which is required by the local assumptions on $g$, is derived by a technique due to J. Moser.},
author = {Pluschke, Volker, Weber, Frank},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {parabolic-elliptic problem; nonlinear Neumann boundary condition; Rothe method; parabolic-elliptic problem; nonlinear Neumann boundary condition; Rothe method},
language = {eng},
number = {1},
pages = {13-38},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The local solution of a parabolic-elliptic equation with a nonlinear Neumann boundary condition},
url = {http://eudml.org/doc/248386},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Pluschke, Volker
AU - Weber, Frank
TI - The local solution of a parabolic-elliptic equation with a nonlinear Neumann boundary condition
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 13
EP - 38
AB - We investigate a parabolic-elliptic problem, where the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. The linear equation is supplemented by a nonlinear Neumann boundary condition $-\partial u/\partial \nu _A = g(\cdot ,\cdot ,u)$ with a locally defined, $L_r$-bounded function $g(t,\cdot ,\xi )$. We prove the existence of a local weak solution to the problem by means of the Rothe method. A uniform a priori estimate for the Rothe approximations in $L_{\infty }$, which is required by the local assumptions on $g$, is derived by a technique due to J. Moser.
LA - eng
KW - parabolic-elliptic problem; nonlinear Neumann boundary condition; Rothe method; parabolic-elliptic problem; nonlinear Neumann boundary condition; Rothe method
UR - http://eudml.org/doc/248386
ER -
References
top- Browder F.E., Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 365-372. (1959) Zbl0093.29402MR0132913
- Filo J., A nonlinear diffusion equation with nonlinear boundary conditions: Method of lines, Math. Slovaca 38.3 (1988), 273-296. (1988) Zbl0664.35049MR0977906
- Fučik S., John O., Kufner A., Function Spaces, Noordhoff International Publishing, Leyden, 1977. MR0482102
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl1042.35002MR0737190
- Jäger W., Kačur J., Solution of porous medium type systems by linear approximation schemes, Numer. Math. 60 (1991), 407-427. (1991) MR1137200
- Kačur J., Method of Rothe in Evolution Equations, BSB Teubner Verlagsgesellschaft, Leipzig, 1985. MR0834176
- Kačur J., On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev-spaces I & II, Math. Z. 203 (1990), 153-171, 569-579. (1990) MR1030713
- Moser J., A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13.3 (1960), 457-468. (1960) Zbl0111.09301MR0170091
- Pluschke V., Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method, Czechoslovak Math. J. 38 , 113 (1988), 642-654. (1988) Zbl0671.35037MR0962908
- Pluschke V., Construction of bounded solutions to degenerated parabolic equations by the Rothe method, in: {Complex Analysis and Differential Equations} (in Russian), Bashkirian State University, Ufa, 1990, pp.58-75. MR1252652
- Pluschke V., -Estimates and Uniform Convergence of Rothe’s Method for Quasilinear Parabolic Differential Equations, in: R. Kleinmann, R. Kress, E. Martensen, {Direct and Inverse Boundary Value Problems}, Verlag Peter Lang GmbH, Frankfurt am Main, 1991, pp.187-199. MR1215747
- Pluschke V., Rothe's method for semilinear parabolic problems with degeneration, Math. Nachr. 156 (1992), 283-295. (1992) Zbl0794.35088MR1233950
- Rektorys K., The Method of Discretization in Time and Partial Differential Equations, D.Reidel Publishing Company, Dordrecht, Boston, London, 1982. Zbl0522.65059MR0689712
- Schechter M., Coerciveness in , Trans. Amer. Math. Soc. 107 (1963), 10-29. (1963) MR0146690
- Slodička M., Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the -space,, Aplikace Matematiky 34 6 (1989), 439-448. (1989) MR1026508
- Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Zbl0830.46028MR0500580
- Weber F., Die Anwendung der Rothe-Methode auf parabolische Probleme mit nichtlinearen Neumannschen Randbedingungen, Dissertation, Martin-Luther-Universität, Halle-Wittenberg, 1995.
- Zeidler E., Nonlinear Functional Analysis and its Applications - Volume II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, Berlin, Heidelberg, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.