Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the L p -space

Marián Slodička

Aplikace matematiky (1989)

  • Volume: 34, Issue: 6, page 439-448
  • ISSN: 0862-7940

Abstract

top
The Rothe-Galerkin method is used for discretization. The rate of convergence in C ( I , L p ( G ) ) for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established.

How to cite

top

Slodička, Marián. "Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space." Aplikace matematiky 34.6 (1989): 439-448. <http://eudml.org/doc/15599>.

@article{Slodička1989,
abstract = {The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established.},
author = {Slodička, Marián},
journal = {Aplikace matematiky},
keywords = {error estimate; Rothe’s method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence; galerkin's method; error estimate; Rothe's method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence},
language = {eng},
number = {6},
pages = {439-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space},
url = {http://eudml.org/doc/15599},
volume = {34},
year = {1989},
}

TY - JOUR
AU - Slodička, Marián
TI - Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 6
SP - 439
EP - 448
AB - The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established.
LA - eng
KW - error estimate; Rothe’s method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence; galerkin's method; error estimate; Rothe's method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence
UR - http://eudml.org/doc/15599
ER -

References

top
  1. P. G. Ciarlet, The finite element method for elliptic problems, North. Holland, Amsterdam 1978. (1978) Zbl0383.65058MR0520174
  2. J. Descloux, Basic properties of Sobolev spaces, approximation by finite elements, Ecole polytechnique féderale Lausanne, Switzerland 1975. (1975) 
  3. G. Di Blasio, 10.1007/BF01762539, Ann. Mat. Рurа Appl. 138 (1984), 55-104. (1984) MR0779538DOI10.1007/BF01762539
  4. R. Glowinski J. L. Lions R. Tremolieres, Analyse numerique des inequations variationelles, Dunod, Paris 1976. (1976) 
  5. D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin - Heidelberg-New York 1981. (1981) Zbl0456.35001MR0610244
  6. J. Kačur, Application of Rothe's method to evolution integrodifferential equations, Universität Heidelberg, SFB 123, 381, 1986. (1986) 
  7. J. Kačur, Method or Rothe in evolution equations, Teubner Texte zur Mathematik 80, Leipzig 1985. (1985) MR0834176
  8. A. Kufner O. John S. Fučík, Function spaces, Academia, Prague 1977. (1977) MR0482102
  9. M. Marino A. Maugeri, 10.1007/BF01766852, Ann. Mat. Рurа Appl. 139 (1985), 107-145. (1985) MR0798171DOI10.1007/BF01766852
  10. V. Pluschke, Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method, (to appear in Czechoslovak. Math. J.). Zbl0671.35037MR0962908
  11. K. Rektorys, The method of discretization in time and and partial differential equations, D. Reidel. Publ. Do., Dordrecht-Boston-London 1982. (1982) MR0689712
  12. Ch. G. Simander, On Dirichlet's boundary value problem, Lecture Notes in Math. 268, Springer-Verlag, Berlin-Heidelberg-New York 1972. (1972) 
  13. M. Slodička, An investigation of convergence and error estimate of approximate solution for quasiliriear integrodifferential equation, (to appear). 
  14. W. von Wahl, 10.1112/jlms/s2-25.3.483, J. London Math. Soc. 25 (1982), 483 - 497. (1982) Zbl0493.35050MR0657505DOI10.1112/jlms/s2-25.3.483
  15. V. Thomee, Galerkin finite element method for parabolic problems, Lecture Notes in Math. 1054, Springer-Verlag, Berlin -Heidelberg-New York-Tokyo 1984. (1984) MR0744045
  16. M. F. Wheeler, 10.1137/0710062, SIAM. J. Numer. Anal. 10 (1973), 723 - 759. (1973) MR0351124DOI10.1137/0710062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.