Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the -space
Aplikace matematiky (1989)
- Volume: 34, Issue: 6, page 439-448
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSlodička, Marián. "Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space." Aplikace matematiky 34.6 (1989): 439-448. <http://eudml.org/doc/15599>.
@article{Slodička1989,
abstract = {The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established.},
author = {Slodička, Marián},
journal = {Aplikace matematiky},
keywords = {error estimate; Rothe’s method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence; galerkin's method; error estimate; Rothe's method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence},
language = {eng},
number = {6},
pages = {439-448},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space},
url = {http://eudml.org/doc/15599},
volume = {34},
year = {1989},
}
TY - JOUR
AU - Slodička, Marián
TI - Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 6
SP - 439
EP - 448
AB - The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established.
LA - eng
KW - error estimate; Rothe’s method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence; galerkin's method; error estimate; Rothe's method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence
UR - http://eudml.org/doc/15599
ER -
References
top- P. G. Ciarlet, The finite element method for elliptic problems, North. Holland, Amsterdam 1978. (1978) Zbl0383.65058MR0520174
- J. Descloux, Basic properties of Sobolev spaces, approximation by finite elements, Ecole polytechnique féderale Lausanne, Switzerland 1975. (1975)
- G. Di Blasio, 10.1007/BF01762539, Ann. Mat. Рurа Appl. 138 (1984), 55-104. (1984) MR0779538DOI10.1007/BF01762539
- R. Glowinski J. L. Lions R. Tremolieres, Analyse numerique des inequations variationelles, Dunod, Paris 1976. (1976)
- D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin - Heidelberg-New York 1981. (1981) Zbl0456.35001MR0610244
- J. Kačur, Application of Rothe's method to evolution integrodifferential equations, Universität Heidelberg, SFB 123, 381, 1986. (1986)
- J. Kačur, Method or Rothe in evolution equations, Teubner Texte zur Mathematik 80, Leipzig 1985. (1985) MR0834176
- A. Kufner O. John S. Fučík, Function spaces, Academia, Prague 1977. (1977) MR0482102
- M. Marino A. Maugeri, 10.1007/BF01766852, Ann. Mat. Рurа Appl. 139 (1985), 107-145. (1985) MR0798171DOI10.1007/BF01766852
- V. Pluschke, Local solution of parabolic equations with strongly increasing nonlinearity by the Rothe method, (to appear in Czechoslovak. Math. J.). Zbl0671.35037MR0962908
- K. Rektorys, The method of discretization in time and and partial differential equations, D. Reidel. Publ. Do., Dordrecht-Boston-London 1982. (1982) MR0689712
- Ch. G. Simander, On Dirichlet's boundary value problem, Lecture Notes in Math. 268, Springer-Verlag, Berlin-Heidelberg-New York 1972. (1972)
- M. Slodička, An investigation of convergence and error estimate of approximate solution for quasiliriear integrodifferential equation, (to appear).
- W. von Wahl, 10.1112/jlms/s2-25.3.483, J. London Math. Soc. 25 (1982), 483 - 497. (1982) Zbl0493.35050MR0657505DOI10.1112/jlms/s2-25.3.483
- V. Thomee, Galerkin finite element method for parabolic problems, Lecture Notes in Math. 1054, Springer-Verlag, Berlin -Heidelberg-New York-Tokyo 1984. (1984) MR0744045
- M. F. Wheeler, 10.1137/0710062, SIAM. J. Numer. Anal. 10 (1973), 723 - 759. (1973) MR0351124DOI10.1137/0710062
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.