Products, the Baire category theorem, and the axiom of dependent choice

Horst Herrlich; Kyriakos Keremedis

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 4, page 771-775
  • ISSN: 0010-2628

Abstract

top
In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire.

How to cite

top

Herrlich, Horst, and Keremedis, Kyriakos. "Products, the Baire category theorem, and the axiom of dependent choice." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 771-775. <http://eudml.org/doc/248409>.

@article{Herrlich1999,
abstract = {In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire.},
author = {Herrlich, Horst, Keremedis, Kyriakos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of dependent choice; Baire category theorem; Baire space; (countably) compact; pseudocompact; Čech-complete; regular-closed; pseudo-complete; product spaces; axiom of choice; Baire category theorem; product},
language = {eng},
number = {4},
pages = {771-775},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products, the Baire category theorem, and the axiom of dependent choice},
url = {http://eudml.org/doc/248409},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Herrlich, Horst
AU - Keremedis, Kyriakos
TI - Products, the Baire category theorem, and the axiom of dependent choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 771
EP - 775
AB - In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire.
LA - eng
KW - axiom of dependent choice; Baire category theorem; Baire space; (countably) compact; pseudocompact; Čech-complete; regular-closed; pseudo-complete; product spaces; axiom of choice; Baire category theorem; product
UR - http://eudml.org/doc/248409
ER -

References

top
  1. Blaire C.E., The Baire Category Theorem implies the principle of dependent choice, Bull. Acad. Math. Astronom. Phys. 25 (1977), 933-934. (1977) MR0469765
  2. Bourbaki N., Topologie générale, ch. IX., Paris, 1948. Zbl1107.54001
  3. Brunner N., Kategoriesätze und Multiples Auswahlaxiom, Zeitschr. f. Math. Logik und Grundlagen d. Math. 29 (1983), 435-443. (1983) Zbl0526.03031MR0716858
  4. Čech E., On bicompact spaces, Ann. Math. 38 (1937), 823-844. (1937) MR1503374
  5. Colmez J., Sur les espaces précompacts, C.R. Acad. Paris 234 (1952), 1019-1021. (1952) Zbl0047.16202MR0055658
  6. Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
  7. Fossy J., Morillon M., The Baire category property and some notions of compactness, preprint, 1995. Zbl0922.03070MR1624737
  8. Goldblatt R., On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic, J. Symbolic Logic 50 (1985), 412-422. (1985) Zbl0567.03023MR0793122
  9. Hausdorff F., Grundzüge der Mengenlehre, Leipzig, 1914. Zbl1010.01031
  10. Herrlich H., T ν -Abgeschlossenheit und T ν -Minimalität, Math. Z. 88 (1965), 285-294. (1965) Zbl0139.40203MR0184191
  11. Herrlich H., Keremedis K., The Baire Category Theorem and Choice, to appear in Topology Appl. Zbl0991.54036MR1787859
  12. Howard P., Rubin J.E., Consequences of the axiom of choice, AMS Math. Surveys and Monographs 59, 1998. Zbl0947.03001MR1637107
  13. Moore R.L., An extension of the theorem that no countable point set is perfect, Proc. Nat. Acad. Sci. USA 10 (1924), 168-170. (1924) 
  14. Oxtoby J.C., Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166. (1961) Zbl0113.16402MR0140638
  15. Pettey D.H., Products of regular-closed spaces, Topology Appl. 14 (1982), 189-199. (1982) Zbl0499.54017MR0667666

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.