Products, the Baire category theorem, and the axiom of dependent choice
Horst Herrlich; Kyriakos Keremedis
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 4, page 771-775
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHerrlich, Horst, and Keremedis, Kyriakos. "Products, the Baire category theorem, and the axiom of dependent choice." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 771-775. <http://eudml.org/doc/248409>.
@article{Herrlich1999,
abstract = {In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire.},
author = {Herrlich, Horst, Keremedis, Kyriakos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of dependent choice; Baire category theorem; Baire space; (countably) compact; pseudocompact; Čech-complete; regular-closed; pseudo-complete; product spaces; axiom of choice; Baire category theorem; product},
language = {eng},
number = {4},
pages = {771-775},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Products, the Baire category theorem, and the axiom of dependent choice},
url = {http://eudml.org/doc/248409},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Herrlich, Horst
AU - Keremedis, Kyriakos
TI - Products, the Baire category theorem, and the axiom of dependent choice
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 771
EP - 775
AB - In ZF (i.e., Zermelo-Fraenkel set theory without the Axiom of Choice) the following statements are shown to be equivalent: (i) The axiom of dependent choice. (ii) Products of compact Hausdorff spaces are Baire. (iii) Products of pseudocompact spaces are Baire. (iv) Products of countably compact, regular spaces are Baire. (v) Products of regular-closed spaces are Baire. (vi) Products of Čech-complete spaces are Baire. (vii) Products of pseudo-complete spaces are Baire.
LA - eng
KW - axiom of dependent choice; Baire category theorem; Baire space; (countably) compact; pseudocompact; Čech-complete; regular-closed; pseudo-complete; product spaces; axiom of choice; Baire category theorem; product
UR - http://eudml.org/doc/248409
ER -
References
top- Blaire C.E., The Baire Category Theorem implies the principle of dependent choice, Bull. Acad. Math. Astronom. Phys. 25 (1977), 933-934. (1977) MR0469765
- Bourbaki N., Topologie générale, ch. IX., Paris, 1948. Zbl1107.54001
- Brunner N., Kategoriesätze und Multiples Auswahlaxiom, Zeitschr. f. Math. Logik und Grundlagen d. Math. 29 (1983), 435-443. (1983) Zbl0526.03031MR0716858
- Čech E., On bicompact spaces, Ann. Math. 38 (1937), 823-844. (1937) MR1503374
- Colmez J., Sur les espaces précompacts, C.R. Acad. Paris 234 (1952), 1019-1021. (1952) Zbl0047.16202MR0055658
- Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
- Fossy J., Morillon M., The Baire category property and some notions of compactness, preprint, 1995. Zbl0922.03070MR1624737
- Goldblatt R., On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic, J. Symbolic Logic 50 (1985), 412-422. (1985) Zbl0567.03023MR0793122
- Hausdorff F., Grundzüge der Mengenlehre, Leipzig, 1914. Zbl1010.01031
- Herrlich H., -Abgeschlossenheit und -Minimalität, Math. Z. 88 (1965), 285-294. (1965) Zbl0139.40203MR0184191
- Herrlich H., Keremedis K., The Baire Category Theorem and Choice, to appear in Topology Appl. Zbl0991.54036MR1787859
- Howard P., Rubin J.E., Consequences of the axiom of choice, AMS Math. Surveys and Monographs 59, 1998. Zbl0947.03001MR1637107
- Moore R.L., An extension of the theorem that no countable point set is perfect, Proc. Nat. Acad. Sci. USA 10 (1924), 168-170. (1924)
- Oxtoby J.C., Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166. (1961) Zbl0113.16402MR0140638
- Pettey D.H., Products of regular-closed spaces, Topology Appl. 14 (1982), 189-199. (1982) Zbl0499.54017MR0667666
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.