An independency result in connectification theory

Alessandro Fedeli; Attilio Le Donne

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 2, page 331-334
  • ISSN: 0010-2628

Abstract

top
A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let ψ be the following statement: “a perfect T 3 -space X with no more than 2 𝔠 clopen subsets is connectifiable if and only if no proper nonempty clopen subset of X is feebly compact". In this note we show that neither ψ nor ¬ ψ is provable in ZFC.

How to cite

top

Fedeli, Alessandro, and Le Donne, Attilio. "An independency result in connectification theory." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 331-334. <http://eudml.org/doc/248414>.

@article{Fedeli1999,
abstract = {A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi $ be the following statement: “a perfect $T_3$-space $X$ with no more than $2^\{\mathfrak \{c\}\}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi $ nor $\lnot \psi $ is provable in ZFC.},
author = {Fedeli, Alessandro, Le Donne, Attilio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {connectifiable; perfect; feebly compact; connectifiable; perfect; feebly compact},
language = {eng},
number = {2},
pages = {331-334},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An independency result in connectification theory},
url = {http://eudml.org/doc/248414},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Fedeli, Alessandro
AU - Le Donne, Attilio
TI - An independency result in connectification theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 331
EP - 334
AB - A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi $ be the following statement: “a perfect $T_3$-space $X$ with no more than $2^{\mathfrak {c}}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi $ nor $\lnot \psi $ is provable in ZFC.
LA - eng
KW - connectifiable; perfect; feebly compact; connectifiable; perfect; feebly compact
UR - http://eudml.org/doc/248414
ER -

References

top
  1. Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G., Connectifying some spaces, Topology Appl. 71 (1996), 203-215. (1996) MR1397942
  2. Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G., Connectedness and local connectedness of topological groups and extensions, Comment. Math. Univ. Carolinae, to appear. MR1756549
  3. Bagley R.W., Connell E.H., McKnight J.D., Jr., On properties characterizing pseudocompact spaces, Proc. A.M.S. 9 (1958), 500-506. (1958) MR0097043
  4. van Douwen E.K., The integers and topology, 111-167 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). (1984) Zbl0561.54004MR0776622
  5. Engelking R., General Topology, Sigma series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
  6. Fedeli A., Le Donne A., On locally connected connectifications, Topology Appl. (1998). Zbl0928.54018
  7. Fedeli A., Le Donne A., Connectifications and open components, submitted. Zbl0953.54023
  8. Kunen K., Set Theory, North Holland (1980). (1980) Zbl0443.03021MR0597342
  9. Ostaszewski A.J., On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. (1976) Zbl0348.54014MR0438292
  10. Porter J.R., Woods R.G., Subspaces of connected spaces, Topology Appl. 68 (1996), 113-131. (1996) Zbl0855.54025MR1374077
  11. Swardson M.A., Nearly realcompact spaces and T 2 -connectifiability, 358-361 Proceedings of the 8th Prague Topological Symposium (1996). (1996) MR1617114
  12. Vaughan J.E., Countably compact and sequentially compact spaces, 569-602 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). (1984) Zbl0562.54031MR0776631
  13. Watson S., Wilson R.G., Embeddings in connected spaces, Houston J. Math. 19 (1993), 3 469-481. (1993) Zbl0837.54012MR1242433
  14. Weiss W.A.R., Countably compact spaces and Martin's axiom, Canad. J. Math. 30 (1978), 243-249. (1978) Zbl0357.54019MR0467673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.