An independency result in connectification theory
Alessandro Fedeli; Attilio Le Donne
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 2, page 331-334
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFedeli, Alessandro, and Le Donne, Attilio. "An independency result in connectification theory." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 331-334. <http://eudml.org/doc/248414>.
@article{Fedeli1999,
abstract = {A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi $ be the following statement: “a perfect $T_3$-space $X$ with no more than $2^\{\mathfrak \{c\}\}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi $ nor $\lnot \psi $ is provable in ZFC.},
author = {Fedeli, Alessandro, Le Donne, Attilio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {connectifiable; perfect; feebly compact; connectifiable; perfect; feebly compact},
language = {eng},
number = {2},
pages = {331-334},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An independency result in connectification theory},
url = {http://eudml.org/doc/248414},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Fedeli, Alessandro
AU - Le Donne, Attilio
TI - An independency result in connectification theory
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 331
EP - 334
AB - A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let $\psi $ be the following statement: “a perfect $T_3$-space $X$ with no more than $2^{\mathfrak {c}}$ clopen subsets is connectifiable if and only if no proper nonempty clopen subset of $X$ is feebly compact". In this note we show that neither $\psi $ nor $\lnot \psi $ is provable in ZFC.
LA - eng
KW - connectifiable; perfect; feebly compact; connectifiable; perfect; feebly compact
UR - http://eudml.org/doc/248414
ER -
References
top- Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G., Connectifying some spaces, Topology Appl. 71 (1996), 203-215. (1996) MR1397942
- Alas O.T., Tkačenko M.G., Tkachuk V.V., Wilson R.G., Connectedness and local connectedness of topological groups and extensions, Comment. Math. Univ. Carolinae, to appear. MR1756549
- Bagley R.W., Connell E.H., McKnight J.D., Jr., On properties characterizing pseudocompact spaces, Proc. A.M.S. 9 (1958), 500-506. (1958) MR0097043
- van Douwen E.K., The integers and topology, 111-167 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). (1984) Zbl0561.54004MR0776622
- Engelking R., General Topology, Sigma series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Fedeli A., Le Donne A., On locally connected connectifications, Topology Appl. (1998). Zbl0928.54018
- Fedeli A., Le Donne A., Connectifications and open components, submitted. Zbl0953.54023
- Kunen K., Set Theory, North Holland (1980). (1980) Zbl0443.03021MR0597342
- Ostaszewski A.J., On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. (1976) Zbl0348.54014MR0438292
- Porter J.R., Woods R.G., Subspaces of connected spaces, Topology Appl. 68 (1996), 113-131. (1996) Zbl0855.54025MR1374077
- Swardson M.A., Nearly realcompact spaces and -connectifiability, 358-361 Proceedings of the 8th Prague Topological Symposium (1996). (1996) MR1617114
- Vaughan J.E., Countably compact and sequentially compact spaces, 569-602 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.) Elsevier Science Publishers B.V., North Holland (1984). (1984) Zbl0562.54031MR0776631
- Watson S., Wilson R.G., Embeddings in connected spaces, Houston J. Math. 19 (1993), 3 469-481. (1993) Zbl0837.54012MR1242433
- Weiss W.A.R., Countably compact spaces and Martin's axiom, Canad. J. Math. 30 (1978), 243-249. (1978) Zbl0357.54019MR0467673
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.