Displaying similar documents to “An independency result in connectification theory”

On the cardinality of functionally Hausdorff spaces

Alessandro Fedeli (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper two new cardinal functions are introduced and investigated. In particular the following two theorems are proved: (i) If X is a functionally Hausdorff space then | X | 2 f s ( X ) ψ τ ( X ) ; (ii) Let X be a functionally Hausdorff space with f s ( X ) κ . Then there is a subset S of X such that | S | 2 κ and X = { c l τ θ ( A ) : A [ S ] κ } .

Compacta are maximally G δ -resolvable

István Juhász, Zoltán Szentmiklóssy (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum X contains Δ ( X ) many pairwise disjoint dense subsets, where Δ ( X ) denotes the minimum size of a non-empty open set in X . The aim of this note is to prove the following analogous result: Every compactum X contains Δ δ ( X ) many pairwise disjoint G δ -dense subsets, where Δ δ ( X ) denotes the minimum size of a non-empty G δ set in X .