C p ( I ) is not subsequential

Viacheslav I. Malykhin

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 4, page 785-788
  • ISSN: 0010-2628

Abstract

top
If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its C p -space is not subsequential.

How to cite

top

Malykhin, Viacheslav I.. "$C_p(I)$ is not subsequential." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 785-788. <http://eudml.org/doc/248416>.

@article{Malykhin1999,
abstract = {If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.},
author = {Malykhin, Viacheslav I.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C_p$-space; sequential; subsequential; sequential space; subsequential space; -space},
language = {eng},
number = {4},
pages = {785-788},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$C_p(I)$ is not subsequential},
url = {http://eudml.org/doc/248416},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Malykhin, Viacheslav I.
TI - $C_p(I)$ is not subsequential
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 785
EP - 788
AB - If a separable dense in itself metric space is not a union of countably many nowhere dense subsets, then its $C_p$-space is not subsequential.
LA - eng
KW - $C_p$-space; sequential; subsequential; sequential space; subsequential space; -space
UR - http://eudml.org/doc/248416
ER -

References

top
  1. Arhangel'skii A.V., Topological Function Spaces, Kluwer Dordrecht, Boston, London 54 (1992). (1992) 
  2. Malykhin V.I., On subspaces of sequential spaces, Math. Notes (in Russian) 64 (1998), 3 407-413. (1998) MR1680130
  3. Pytke'ev E.G., On maximally resolvable spaces, Proc. Steklov Institute of Mathematics (1984), 154 225-230. (1984) 
  4. Malykhin V.I., Tironi G., Weakly Fréchet-Urysohn spaces, Quaderni Matematica, II Serie, Univ. di Trieste (1996), 386 1-9. (1996) 

NotesEmbed ?

top

You must be logged in to post comments.