Evolution inclusions in non separable Banach spaces

Francesco Saverio De Blasi; Giulio Pianigiani

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 2, page 227-250
  • ISSN: 0010-2628

Abstract

top
We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.

How to cite

top

De Blasi, Francesco Saverio, and Pianigiani, Giulio. "Evolution inclusions in non separable Banach spaces." Commentationes Mathematicae Universitatis Carolinae 40.2 (1999): 227-250. <http://eudml.org/doc/248428>.

@article{DeBlasi1999,
abstract = {We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.},
author = {De Blasi, Francesco Saverio, Pianigiani, Giulio},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {evolution inclusions; mild solutions; Lusin measurable multifunctions; Banach spaces; relaxation; evolution inclusions; mild solutions; Lusin measurable multifunctions; Banach spaces; relaxation},
language = {eng},
number = {2},
pages = {227-250},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Evolution inclusions in non separable Banach spaces},
url = {http://eudml.org/doc/248428},
volume = {40},
year = {1999},
}

TY - JOUR
AU - De Blasi, Francesco Saverio
AU - Pianigiani, Giulio
TI - Evolution inclusions in non separable Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 2
SP - 227
EP - 250
AB - We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.
LA - eng
KW - evolution inclusions; mild solutions; Lusin measurable multifunctions; Banach spaces; relaxation; evolution inclusions; mild solutions; Lusin measurable multifunctions; Banach spaces; relaxation
UR - http://eudml.org/doc/248428
ER -

References

top
  1. Bressan A., Colombo G., Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. (1988) Zbl0677.54013MR0947921
  2. Castaing C., Valadier M., Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR0467310
  3. De Blasi F.S., Pianigiani G., Hausdorff measurable multifunctions, J. Math. Anal. Appl. 228 (1998), 1-15. (1998) Zbl0921.54013MR1659936
  4. Filippov A.F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control Optim. 5 (1967), 609-621. (1967) MR0220995
  5. Frankowska H., A priori estimates for operational differential inclusions, J. Differential Equations 84 (1990), 100-128. (1990) Zbl0715.49010MR1042661
  6. Hermes H., The generalized differential equation x ' R ( t , x ) , Advances in Math. 4 (1970), 149-169. (1970) MR0252722
  7. Hille E., Phillips R.S., Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence R.I., 1957. Zbl0392.46001MR0089373
  8. Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53-72. (1975) Zbl0296.28003MR0367142
  9. Himmelberg C.J., Van Vleck F.S., Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova 48 (1973), 159-169. (1973) Zbl0289.49009MR0340692
  10. Hu S., Lakshmikantham V., Papageorgiou N.S., On the solutions set of nonlinear differential inclusions, Dynamic Systems and Appl. 1 (1992), 71-82. (1992) MR1154650
  11. Klein E., Thompson A.C., Theory of correspondences, J. Wiley, New York, 1984. Zbl0556.28012MR0752692
  12. Kuratowski K., Ryll-Nardzewski C., A general theorem on selectors, Bull. Acad. Pol. Sci. Sér. Soc. Math. Astron. Phys. 13 (1965), 397-403. (1965) Zbl0152.21403MR0188994
  13. Papageorgiou N.S., Convexity of the orientor field and the solution set of a class of evolution inclusions, Math. Slovaca 43 (1993), 593-615. (1993) Zbl0799.34018MR1273713
  14. Papageorgiou N.S., A continuous version of the relaxation theorem for nonlinear evolution inclusions, Houston J. Math. 20 (1994), 685-704. (1994) Zbl0864.34057MR1305938
  15. Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983. Zbl0516.47023MR0710486
  16. Tolstonogov A.A., On the properties of integral solutions of differential inclusions with m -accretive operators, Soviet Math. Notes 49 (1991), 119-131. (1991) MR1135523

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.