A note on the solutions of a second-order evolution inclusion in non separable Banach spaces

Aurelian Cernea

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 3, page 307-314
  • ISSN: 0010-2628

Abstract

top
We consider a Cauchy problem associated to a second-order evolution inclusion in non separable Banach spaces under Filippov type assumptions and we prove the existence of mild solutions.

How to cite

top

Cernea, Aurelian. "A note on the solutions of a second-order evolution inclusion in non separable Banach spaces." Commentationes Mathematicae Universitatis Carolinae 58.3 (2017): 307-314. <http://eudml.org/doc/294085>.

@article{Cernea2017,
abstract = {We consider a Cauchy problem associated to a second-order evolution inclusion in non separable Banach spaces under Filippov type assumptions and we prove the existence of mild solutions.},
author = {Cernea, Aurelian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lusin measurable multifunctions; differential inclusion; selection},
language = {eng},
number = {3},
pages = {307-314},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on the solutions of a second-order evolution inclusion in non separable Banach spaces},
url = {http://eudml.org/doc/294085},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Cernea, Aurelian
TI - A note on the solutions of a second-order evolution inclusion in non separable Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 3
SP - 307
EP - 314
AB - We consider a Cauchy problem associated to a second-order evolution inclusion in non separable Banach spaces under Filippov type assumptions and we prove the existence of mild solutions.
LA - eng
KW - Lusin measurable multifunctions; differential inclusion; selection
UR - http://eudml.org/doc/294085
ER -

References

top
  1. Baliki A., Benchohra M., Graef J.R., Global existence and stability of second order functional evolution equations with infinite delay, Electronic J. Qual. Theory Differ. Equations 2016 (2016), no. 23, 1–10. MR3498741
  2. Baliki A., Benchohra M., Nieto J.J., Qualitative analysis of second-order functional evolution equations, Dynamic Syst. Appl. 24 (2015), 559–572. MR3444994
  3. Benchohra M., Medjadj I., Global existence results for second order neutral functional differential equations with state-dependent delay, Comment. Math. Univ. Carolin. 57 (2016), 169–183. MR3513443
  4. Bressan A., Colombo G., 10.4064/sm-90-1-69-86, Studia Math. 90 (1988), 69–86. Zbl0677.54013MR0947921DOI10.4064/sm-90-1-69-86
  5. De Blasi F.S., Pianigiani G., Evolution inclusions in non separable Banach spaces, Comment. Math. Univ. Carolin. 40 (1999), 227–250. Zbl0987.34063MR1732644
  6. Filippov A.F., 10.1137/0305040, SIAM J. Control Optim. 5 (1967), 609–621. MR0220995DOI10.1137/0305040
  7. Henriquez H.R., 10.1016/j.na.2011.02.010, Nonlinear Anal. 74 (2011), 3333–3352. MR2793566DOI10.1016/j.na.2011.02.010
  8. Henriquez H.R., Poblete V., Pozo J.C., 10.1016/j.jmaa.2013.10.086, J. Math. Anal. Appl. 412 (2014), 1064–1083. Zbl1317.34144MR3147269DOI10.1016/j.jmaa.2013.10.086
  9. Kozak M., A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta. Math. 32 (1995), 275–289. Zbl0855.34073MR1345144
  10. Kuratowski K., Ryll-Nardzewski C., A general theorem on selectors, Bull. Acad. Pol. Sci. Math. Astron. Phys. 13 (1965), 397–403. Zbl0152.21403MR0188994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.