Directional moduli of rotundity and smoothness

Michael O. Bartlett; John R. Giles; Jon D. Vanderwerff

Commentationes Mathematicae Universitatis Carolinae (1999)

  • Volume: 40, Issue: 1, page 39-51
  • ISSN: 0010-2628

Abstract

top
We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.

How to cite

top

Bartlett, Michael O., Giles, John R., and Vanderwerff, Jon D.. "Directional moduli of rotundity and smoothness." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 39-51. <http://eudml.org/doc/248440>.

@article{Bartlett1999,
abstract = {We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.},
author = {Bartlett, Michael O., Giles, John R., Vanderwerff, Jon D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {uniform rotundity; uniform smoothness; moduli of power type; superreflexive; Banach space; equivalent norm; directional moduli of rotundity and smoothness},
language = {eng},
number = {1},
pages = {39-51},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Directional moduli of rotundity and smoothness},
url = {http://eudml.org/doc/248440},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Bartlett, Michael O.
AU - Giles, John R.
AU - Vanderwerff, Jon D.
TI - Directional moduli of rotundity and smoothness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 39
EP - 51
AB - We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.
LA - eng
KW - uniform rotundity; uniform smoothness; moduli of power type; superreflexive; Banach space; equivalent norm; directional moduli of rotundity and smoothness
UR - http://eudml.org/doc/248440
ER -

References

top
  1. Borwein J.M., Noll D., Second-order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc. 342 (1994), 43-81. (1994) Zbl0802.46027MR1145959
  2. Borwein J.M., Treiman J.S., Zhu Q.J., Partially smooth variational principles and applications, preprint. Zbl0927.49010MR1707806
  3. Bourgin R.D., Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Mathematics 993, Springer-Verlag, 1983. Zbl0512.46017MR0704815
  4. Cudia D.F., The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314. (1964) Zbl0123.30701MR0163143
  5. Day M.M., Uniform convexity III, Bull. Amer. Math. Soc. 49 (1943), 745-750. (1943) Zbl0063.01056MR0009422
  6. Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman, 1993. Zbl0782.46019MR1211634
  7. Deville R., Godefroy G., Zizler V., Smooth bump functions and the geometry of Banach spaces, Mathematika 40 (1993), 305-321. (1993) MR1260894
  8. Fabian M., Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces, Proc. London Math. Soc. 51 (1985), 113-126. (1985) Zbl0549.46025MR0788852
  9. Giles J.R., Sciffer S., On weak Hadamard differentiability of convex functions on Banach spaces, Bull. Austral. Math. Soc. 54 (1996), 155-166. (1996) Zbl0886.46050MR1403000
  10. Hájek P., Dual renormings of Banach spaces, Comment. Math. Univ. Carolinae 37 (1996), 241-253. (1996) MR1398999
  11. McLaughlin D., Poliquin R., Vanderwerff J., Zizler V., Second-order Gateaux differentiable bump functions and approximations in Banach spaces, Canad. J. Math. 45 (1993), 612-625. (1993) Zbl0796.46005MR1222519
  12. McLaughlin D., Vanderwerff J., Higher-order Gateaux differentiable bump functions on Banach spaces, Bull. Austral. Math. Soc. 51 (1995), 291-300. (1995) MR1322795
  13. Moors W.B., Giles J.R., Generic continuity of minimal set-valued mappings, J. Austral. Math. Soc. 63A (1997), 238-262. (1997) Zbl0912.46017MR1475564
  14. Smith M.A., Banach spaces that are uniformly rotund in weakly compact sets of directions, Canad. J. Math. 29 (1977), 963-970. (1977) Zbl0338.46021MR0450942
  15. Smith M.A., A curious generalization of local uniform rotundity, Comment. Math. Univ. Carolinae 25 (1984), 659-665. (1984) Zbl0578.46017MR0782015
  16. Swaminathan S., Normal structure in Banach spaces and its generalisations, Contemporary Mathematics 18 (1983), 201-215. (1983) Zbl0512.46014MR0728601
  17. Turett B., A dual view of a theorem of Ballion, Nonlinear Analysis and Applications, Dekker, New York, 1982, pp.279-286. MR0689566
  18. Zajíček L., Differentiability of the distance function and points of multivaluedness of the metric projection in Banach spaces, Czech. Math. J. 33 (1983), 292-308. (1983) MR0699027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.