Directional moduli of rotundity and smoothness
Michael O. Bartlett; John R. Giles; Jon D. Vanderwerff
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 1, page 39-51
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBartlett, Michael O., Giles, John R., and Vanderwerff, Jon D.. "Directional moduli of rotundity and smoothness." Commentationes Mathematicae Universitatis Carolinae 40.1 (1999): 39-51. <http://eudml.org/doc/248440>.
@article{Bartlett1999,
abstract = {We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.},
author = {Bartlett, Michael O., Giles, John R., Vanderwerff, Jon D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {uniform rotundity; uniform smoothness; moduli of power type; superreflexive; Banach space; equivalent norm; directional moduli of rotundity and smoothness},
language = {eng},
number = {1},
pages = {39-51},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Directional moduli of rotundity and smoothness},
url = {http://eudml.org/doc/248440},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Bartlett, Michael O.
AU - Giles, John R.
AU - Vanderwerff, Jon D.
TI - Directional moduli of rotundity and smoothness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 1
SP - 39
EP - 51
AB - We study various notions of directional moduli of rotundity and when such moduli of rotundity of power type imply the underlying space is superreflexive. Duality with directional moduli of smoothness and some applications are also discussed.
LA - eng
KW - uniform rotundity; uniform smoothness; moduli of power type; superreflexive; Banach space; equivalent norm; directional moduli of rotundity and smoothness
UR - http://eudml.org/doc/248440
ER -
References
top- Borwein J.M., Noll D., Second-order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc. 342 (1994), 43-81. (1994) Zbl0802.46027MR1145959
- Borwein J.M., Treiman J.S., Zhu Q.J., Partially smooth variational principles and applications, preprint. Zbl0927.49010MR1707806
- Bourgin R.D., Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Mathematics 993, Springer-Verlag, 1983. Zbl0512.46017MR0704815
- Cudia D.F., The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314. (1964) Zbl0123.30701MR0163143
- Day M.M., Uniform convexity III, Bull. Amer. Math. Soc. 49 (1943), 745-750. (1943) Zbl0063.01056MR0009422
- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman, 1993. Zbl0782.46019MR1211634
- Deville R., Godefroy G., Zizler V., Smooth bump functions and the geometry of Banach spaces, Mathematika 40 (1993), 305-321. (1993) MR1260894
- Fabian M., Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces, Proc. London Math. Soc. 51 (1985), 113-126. (1985) Zbl0549.46025MR0788852
- Giles J.R., Sciffer S., On weak Hadamard differentiability of convex functions on Banach spaces, Bull. Austral. Math. Soc. 54 (1996), 155-166. (1996) Zbl0886.46050MR1403000
- Hájek P., Dual renormings of Banach spaces, Comment. Math. Univ. Carolinae 37 (1996), 241-253. (1996) MR1398999
- McLaughlin D., Poliquin R., Vanderwerff J., Zizler V., Second-order Gateaux differentiable bump functions and approximations in Banach spaces, Canad. J. Math. 45 (1993), 612-625. (1993) Zbl0796.46005MR1222519
- McLaughlin D., Vanderwerff J., Higher-order Gateaux differentiable bump functions on Banach spaces, Bull. Austral. Math. Soc. 51 (1995), 291-300. (1995) MR1322795
- Moors W.B., Giles J.R., Generic continuity of minimal set-valued mappings, J. Austral. Math. Soc. 63A (1997), 238-262. (1997) Zbl0912.46017MR1475564
- Smith M.A., Banach spaces that are uniformly rotund in weakly compact sets of directions, Canad. J. Math. 29 (1977), 963-970. (1977) Zbl0338.46021MR0450942
- Smith M.A., A curious generalization of local uniform rotundity, Comment. Math. Univ. Carolinae 25 (1984), 659-665. (1984) Zbl0578.46017MR0782015
- Swaminathan S., Normal structure in Banach spaces and its generalisations, Contemporary Mathematics 18 (1983), 201-215. (1983) Zbl0512.46014MR0728601
- Turett B., A dual view of a theorem of Ballion, Nonlinear Analysis and Applications, Dekker, New York, 1982, pp.279-286. MR0689566
- Zajíček L., Differentiability of the distance function and points of multivaluedness of the metric projection in Banach spaces, Czech. Math. J. 33 (1983), 292-308. (1983) MR0699027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.