Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space

Luděk Zajíček

Czechoslovak Mathematical Journal (1983)

  • Volume: 33, Issue: 2, page 292-308
  • ISSN: 0011-4642

How to cite

top

Zajíček, Luděk. "Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space." Czechoslovak Mathematical Journal 33.2 (1983): 292-308. <http://eudml.org/doc/13383>.

@article{Zajíček1983,
author = {Zajíček, Luděk},
journal = {Czechoslovak Mathematical Journal},
keywords = {metric projection; distance function; Lipschitz hypersurfaces; uniformly Gateaux differentiable norm},
language = {eng},
number = {2},
pages = {292-308},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space},
url = {http://eudml.org/doc/13383},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Zajíček, Luděk
TI - Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space
JO - Czechoslovak Mathematical Journal
PY - 1983
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 33
IS - 2
SP - 292
EP - 308
LA - eng
KW - metric projection; distance function; Lipschitz hypersurfaces; uniformly Gateaux differentiable norm
UR - http://eudml.org/doc/13383
ER -

References

top
  1. T. Abatzoglou, 10.1090/S0002-9939-1980-0556619-8, Proc. Amer. Math. Soc. 78 (1980), 492-496. (1980) Zbl0475.41035MR0556619DOI10.1090/S0002-9939-1980-0556619-8
  2. A. D. Aleksandrov, Existence almost everywhere of the second differential of a convex function and some properties of convex surfaces connected with it, (Russian), Učenye Zapiski Leningrad. Gos. Univ. Math. Ser. 6 (1939), 3 - 35. (1939) 
  3. N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. (1976) Zbl0342.46034MR0425608
  4. E. Asplund, Differentiability of the metric projection in finite-dimensional Euclidean spaces, Proc. Amer. Math. Soc. 38 (1973), 218-219. (1973) Zbl0269.52002MR0310150
  5. H. Blumberg, Exceptional sets, Fund. Math. 32 (1939), 3 - 32. (1939) Zbl0021.11206
  6. G. Bouligand, Sur la distance d'un point variable a un ensemble fixe, C. R. Acad. Sci. Paris 206 (1938), 552-554. (1938) Zbl0018.17301
  7. E. P. Dolženko, Boundary properties of arbitrary functions, (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. (1967) Zbl0181.08102MR0217297
  8. P. Erdös, 10.1090/S0002-9904-1946-08514-6, Bull. Amer. Math. Soc. 52 (1946), 107-109. (1946) Zbl0063.01272MR0015144DOI10.1090/S0002-9904-1946-08514-6
  9. S. Fitzpatrick, 10.1017/S0004972700006596, Bull. Austral. Math. Soc. 22 (1980), 291-312. (1980) Zbl0437.46012MR0598702DOI10.1017/S0004972700006596
  10. S. Golab, Sur la fonction representant la distance d'un point variable a un ensemble fixe, С. R. Acad. Sci. Paris 206 (1938), 406-408. (1938) Zbl0018.17205
  11. P. Hartman, 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
  12. S. V. Konjagin, Approximation properties of arbitrary sets in Banach spaces, Dokl. Akad. Nauk SSSR 239 (1978), No. 2, 261-264, Soviet. Math. Dokl. 19 (1978), No. 2, 309-312. (1978) MR0493113
  13. S. V. Konjagin, On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces, (Russian), Dokl. Akad. Nauk SSSR 251 (1980), No. 2, 276-280, Soviet. Math. Dokl. 21 (1980), No. 2, 418-422. (1980) MR0565493
  14. E. J. Mc Shane, 10.1090/S0002-9904-1934-05978-0, Bull. Amer. Math. Soc. 40 (1934), 837-842. (1934) MR1562984DOI10.1090/S0002-9904-1934-05978-0
  15. F. Mignot, 10.1016/0022-1236(76)90017-3, J. Functional Analysis 22 (1976), 130-185. (1976) Zbl0364.49003MR0423155DOI10.1016/0022-1236(76)90017-3
  16. M. R. de Mises, La base géométrique du théoreme de M. Mandelbrojt sur les points singuliers d'une fonction analytique, C. R. Acad. Sci. Paris 205 (1937), 1353 - 1355. (1937) Zbl0017.42601
  17. R. R. Phelps, 10.2140/pjm.1978.77.523, Pacific J. Math. 18 (1978), 523-531. (1978) Zbl0396.46041MR0510938DOI10.2140/pjm.1978.77.523
  18. Ju. G. Resetnjak, On a generalization of convex surfaces, (Russian), Mat. Sbornik 40 (82) (1956), 381-398. (1956) MR0083757
  19. A. W. Roberts, D. E. Varberg, Convex functions, New York, 1973. (1973) Zbl0271.26009MR0442824
  20. S. Saks, Theory of the Integral, New York, 1937. (1937) Zbl0017.30004
  21. W. H. Young, La symétrie de structure des fonctions de variables réeles, Bull. Sci. Math. 52 (1928), 265-280. (1928) Zbl54.0268.09
  22. L. Zajíček, On cluster sets of arbitrary functions, Fund. Math, 83 (1974), 197-217. (1974) Zbl0276.26005MR0338294
  23. L. Zajíček, Sets of σ -porosity and sets of σ -porosity, (q). Čas. pěst. mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731
  24. L. Zajíček, On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolinae 19 (1978), 179-189. (1978) Zbl0404.47025MR0493541
  25. L. Zajíček, On the points of multivaluedness of metric projections in separable Banach spaces, Comment. Math. Univ. Carolinae 19 (1978), 513 - 523. (1978) Zbl0382.46007MR0508958
  26. L. Zajíček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (104) (1979), 340-348. (1979) Zbl0429.46007MR0536060
  27. L. Zajíček, On metric projections and distance functions in Banach spaces, Abstracta of Eighth winter school on abstract analysis (1980), 207-208, Prague 1980. (1980) 

Citations in EuDML Documents

top
  1. Luděk Zajíček, On differentiability properties of Lipschitz functions on a Banach space with a Lipschitz uniformly Gâteaux differentiable bump function
  2. Michael O. Bartlett, John R. Giles, Jon D. Vanderwerff, Directional moduli of rotundity and smoothness
  3. Luděk Zajíček, Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces
  4. Luděk Zajíček, Singular points of order k of Clarke regular and arbitrary functions
  5. Jan Rataj, Luděk Zajíček, Properties of distance functions on convex surfaces and applications
  6. Luděk Zajíček, On Lipschitz and d.c. surfaces of finite codimension in a Banach space

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.