Spaces with --linked topologies as special subspaces of separable spaces
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 3, page 561-570
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLevy, Ronnie, and Matveev, Mikhail. "Spaces with $\sigma $-$n$-linked topologies as special subspaces of separable spaces." Commentationes Mathematicae Universitatis Carolinae 40.3 (1999): 561-570. <http://eudml.org/doc/248441>.
@article{Levy1999,
abstract = {We characterize spaces with $\sigma $-$n$-linked bases as specially embedded subspaces of separable spaces, and derive some corollaries, such as the $\mathbf \{c\}$-productivity of the property of having a $\sigma $-linked base.},
author = {Levy, Ronnie, Matveev, Mikhail},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {separable; c.c.c.; $\sigma $-centered base; $\sigma $-$n$-linked base; $I_n$-embedding; $I_\{<\omega \}$-embedding; product; Martin’s Axiom; $C_p$-spaces; c.c.c.; -centered base; --linked base; -embedding; -embedding; product; Martin's axiom; -spaces},
language = {eng},
number = {3},
pages = {561-570},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces with $\sigma $-$n$-linked topologies as special subspaces of separable spaces},
url = {http://eudml.org/doc/248441},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Levy, Ronnie
AU - Matveev, Mikhail
TI - Spaces with $\sigma $-$n$-linked topologies as special subspaces of separable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 3
SP - 561
EP - 570
AB - We characterize spaces with $\sigma $-$n$-linked bases as specially embedded subspaces of separable spaces, and derive some corollaries, such as the $\mathbf {c}$-productivity of the property of having a $\sigma $-linked base.
LA - eng
KW - separable; c.c.c.; $\sigma $-centered base; $\sigma $-$n$-linked base; $I_n$-embedding; $I_{<\omega }$-embedding; product; Martin’s Axiom; $C_p$-spaces; c.c.c.; -centered base; --linked base; -embedding; -embedding; product; Martin's axiom; -spaces
UR - http://eudml.org/doc/248441
ER -
References
top- Arhangel'skii A.V., Topological function spaces, Mathematics and its applications (Soviet Series) 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR1144519
- Baumgartner J.E., van Douwen E.K., Strong realcompactness and weakly measurable cardinals Topology Appl., 35 (1990), 239-251. (1990) MR1058804
- Bonanzinga M., Matveev M.V., Products of star-Lindelöf and related spaces, in preparation. Zbl0983.54006
- Borges C.R., Extension properties of -spaces Questions Answers Gen. Topology, 7 (1989), 81-97. (1989) MR1026403
- Borges C.R., Extensions of real-valued functions Questions Answers Gen. Topology, 14 (1996), 233-243. (1996) MR1403348
- van Douwen E.K., Simultaneous extension of continuous functions, Thesis, Vrije Univ., Amsterdam (1975): E. K. van Douwen, {Collected Papers}, Ed. by J. van Mill, North Holland, 1994, pp.67-171.
- van Douwen E.K., Simultaneous linear extension of continuous functions Topology Appl., 5 (1975), 297-319. (1975) MR0380715
- van Douwen E.K., Density of compactifications, Set-theoretic Topology, G.M. Reed ed., N.Y., 1977, pp.97-110. Zbl0379.54006MR0442887
- van Douwen E.K., The Pixley-Roy topology on spaces of subsets, Set-theoretic Topology, G.M. Reed ed., N.Y., 1977, pp.111-134. Zbl0372.54006MR0440489
- Kuratowski K., Topology I, Academic Press, New York, 1966. Zbl0849.01044MR0217751
- Levy R., McDowell R.H., Dense subsets of , Proc. Amer. Math. Soc. 507 (1975), 426-429. (1975) Zbl0313.54025MR0370506
- Steprans J., Watson S., Cellularity of first countable spaces, Topology Appl. 28 (1988), 141-145. (1988) Zbl0634.54015MR0932978
- Tall F., Normality versus collectionwise normality, Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan eds., Elsevier Sci. Pub. B.V., 1984, pp.685-732. Zbl0552.54011MR0776634
- Weiss W., Versions of Martin's axiom, Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.827-886. Zbl0571.54005MR0776619
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.