Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Functional separability

Ronnie LevyM. Matveev — 2010

Commentationes Mathematicae Universitatis Carolinae

A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples distinguishing...

On monotone Lindelöfness of countable spaces

Ronnie LevyMikhail Matveev — 2008

Commentationes Mathematicae Universitatis Carolinae

A space is monotonically Lindelöf (mL) if one can assign to every open cover 𝒰 a countable open refinement r ( 𝒰 ) so that r ( 𝒰 ) refines r ( 𝒱 ) whenever 𝒰 refines 𝒱 . We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.

Weak extent in normal spaces

Ronnie LevyMikhail Matveev — 2005

Commentationes Mathematicae Universitatis Carolinae

If X is a space, then the we ( X ) of X is the cardinal min { α : If 𝒰 is an open cover of X , then there exists A X such that | A | = α and St ( A , 𝒰 ) = X } . In this note, we show that if X is a normal space such that | X | = 𝔠 and we ( X ) = ω , then X does not have a closed discrete subset of cardinality 𝔠 . We show that this result cannot be strengthened in ZFC to get that the extent of X is smaller than 𝔠 , even if the condition that we ( X ) = ω is replaced by the stronger condition that X is separable.

Covering ω ω by special Cantor sets

Gary GruenhageRonnie Levy — 2002

Commentationes Mathematicae Universitatis Carolinae

This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space ω ω of irrationals, or certain of its subspaces. In particular, given f ω ( ω { 0 } ) , we consider compact sets of the form i ω B i , where | B i | = f ( i ) for all, or for infinitely many, i . We also consider “ n -splitting” compact sets, i.e., compact sets K such that for any f K and i ω , | { g ( i ) : g K , g i = f i } | = n .

Page 1

Download Results (CSV)