On a higher-order Hardy inequality
David Eric Edmunds; Jiří Rákosník
Mathematica Bohemica (1999)
- Volume: 124, Issue: 2-3, page 113-121
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEdmunds, David Eric, and Rákosník, Jiří. "On a higher-order Hardy inequality." Mathematica Bohemica 124.2-3 (1999): 113-121. <http://eudml.org/doc/248453>.
@article{Edmunds1999,
abstract = {The Hardy inequality $\int _\Omega |u(x)|^pd(x)^\{-p\}\ddot\{x\}\le c\int _\Omega |\nabla u(x)|^p\ddot\{x\}$ with $d(x)=\operatorname\{dist\}(x,\partial \Omega )$ holds for $u\in C^\infty _0(\Omega )$ if $\Omega \subset \mathbb \{R\}^n$ is an open set with a sufficiently smooth boundary and if $1<p<\infty $. P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$.},
author = {Edmunds, David Eric, Rákosník, Jiří},
journal = {Mathematica Bohemica},
keywords = {Hardy inequality; capacity; maximal function; Sobolev space; $p$-thick set; Hardy inequality; capacity; -thick set; maximal function; Sobolev space},
language = {eng},
number = {2-3},
pages = {113-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a higher-order Hardy inequality},
url = {http://eudml.org/doc/248453},
volume = {124},
year = {1999},
}
TY - JOUR
AU - Edmunds, David Eric
AU - Rákosník, Jiří
TI - On a higher-order Hardy inequality
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 113
EP - 121
AB - The Hardy inequality $\int _\Omega |u(x)|^pd(x)^{-p}\ddot{x}\le c\int _\Omega |\nabla u(x)|^p\ddot{x}$ with $d(x)=\operatorname{dist}(x,\partial \Omega )$ holds for $u\in C^\infty _0(\Omega )$ if $\Omega \subset \mathbb {R}^n$ is an open set with a sufficiently smooth boundary and if $1<p<\infty $. P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$.
LA - eng
KW - Hardy inequality; capacity; maximal function; Sobolev space; $p$-thick set; Hardy inequality; capacity; -thick set; maximal function; Sobolev space
UR - http://eudml.org/doc/248453
ER -
References
top- D. R. Adams L. I. Hedberg, Function spaces and potential theory, Springer, Berlin, 1996. (1996) MR1411441
- D. E. Edmunds H. Triebel, Function spaces, entropy numbers and differential operators, Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. (1996) MR1410258
- D. Gilbarg N. S. Trudinger, Elliptic partial differential equations of second order, (2nd ed.), Springer, Berlin, 1983. (1983) MR0737190
- P. Hajlasz, 10.1090/S0002-9939-99-04495-0, Proc. Amer. Math. Soc. 127 (1999), 417-423. (1999) Zbl0911.31005MR1458875DOI10.1090/S0002-9939-99-04495-0
- J. Heinonen T. Kilpeläinen O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Science Publications, Clarendon. Press, Oxford, 1993. (1993) MR1207810
- J. Kinnunen O. Martio, 10.4310/MRL.1997.v4.n4.a6, Math. Res. Lett. 4 (1997), no. 4, 489-500. (1997) MR1470421DOI10.4310/MRL.1997.v4.n4.a6
- J. L. Lewis, 10.1090/S0002-9947-1988-0946438-4, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177-196. (1988) Zbl0668.31002MR0946438DOI10.1090/S0002-9947-1988-0946438-4
- V. G. Maz'ya, Sobolev spaces, Springer, Berlin, 1985. (1985) Zbl0727.46017MR0817985
- P. Mikkonen, On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci.Fenn.Ser. A.I. Math, Dissertationes 104 (1996), 1-71. (1996) Zbl0860.35041MR1386213
- B. Opic A. Kufner, Hardy-type inequalities, Pitman Research Notes in Math. Series 219, Longman Sci. &Tech., Harlow, 1990. (1990) MR1069756
- E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970. (1970) Zbl0207.13501MR0290095
- A. Wannebo, 10.1090/S0002-9939-1990-1010807-1, Proc. Amer. Math. Soc. 109 (1990), no. 1, 85-95. (1990) Zbl0715.26009MR1010807DOI10.1090/S0002-9939-1990-1010807-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.