On weighted estimates of solutions of nonlinear elliptic problems

Igor V. Skrypnik; Dmitry V. Larin

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 173-184
  • ISSN: 0862-7959

Abstract

top
The paper is devoted to the estimate u(x,k)Kk{capp,w(F)pw(B(x,))} 1p-1, 2 p < n for a solution of a degenerate nonlinear elliptic equation in a domain B ( x 0 , 1 ) F , F B ( x 0 , d ) = { x n | x 0 - x | < d } , d < 1 2 , under the boundary-value conditions u ( x , k ) = k for x F , u ( x , k ) = 0 for x B ( x 0 , 1 ) and where 0 < ρ d i s t ( x , F ) , w ( x ) is a weighted function from some Muckenhoupt class, and c a p p , w ( F ) , w ( B ( x , ρ ) ) are weighted capacity and measure of the corresponding sets.

How to cite

top

Skrypnik, Igor V., and Larin, Dmitry V.. "On weighted estimates of solutions of nonlinear elliptic problems." Mathematica Bohemica 124.2-3 (1999): 173-184. <http://eudml.org/doc/248454>.

@article{Skrypnik1999,
abstract = {The paper is devoted to the estimate u(x,k)Kk\{capp,w(F)pw(B(x,))\} 1p-1, $2p<n$ for a solution of a degenerate nonlinear elliptic equation in a domain $\{B(x_0,1)\setminus F\}$, $F\subset B(x_0,d)=\lbrace x\in \mathbb \{R\}^n |x_0-x|<d\rbrace $, $d<\frac\{1\}\{2\}$, under the boundary-value conditions $u(x,k)=k$ for $x\in \partial F$, $ u(x,k)=0$ for $x\in \partial B(x_0,1)$ and where $0<\rho \le \mathop dist(x,F)$, $w(x)$ is a weighted function from some Muckenhoupt class, and $\mathop cap_\{p,w\}(F)$, $w(B(x,\rho ))$ are weighted capacity and measure of the corresponding sets.},
author = {Skrypnik, Igor V., Larin, Dmitry V.},
journal = {Mathematica Bohemica},
keywords = {degeneracy; Muckenhoupt class; pointwise estimate; nonlinear elliptic equation; capacity; a-priori estimate; degeneracy; Muckenhoupt class; pointwise estimate; nonlinear elliptic equation; capacity; a-priori estimate},
language = {eng},
number = {2-3},
pages = {173-184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On weighted estimates of solutions of nonlinear elliptic problems},
url = {http://eudml.org/doc/248454},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Skrypnik, Igor V.
AU - Larin, Dmitry V.
TI - On weighted estimates of solutions of nonlinear elliptic problems
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 173
EP - 184
AB - The paper is devoted to the estimate u(x,k)Kk{capp,w(F)pw(B(x,))} 1p-1, $2p<n$ for a solution of a degenerate nonlinear elliptic equation in a domain ${B(x_0,1)\setminus F}$, $F\subset B(x_0,d)=\lbrace x\in \mathbb {R}^n |x_0-x|<d\rbrace $, $d<\frac{1}{2}$, under the boundary-value conditions $u(x,k)=k$ for $x\in \partial F$, $ u(x,k)=0$ for $x\in \partial B(x_0,1)$ and where $0<\rho \le \mathop dist(x,F)$, $w(x)$ is a weighted function from some Muckenhoupt class, and $\mathop cap_{p,w}(F)$, $w(B(x,\rho ))$ are weighted capacity and measure of the corresponding sets.
LA - eng
KW - degeneracy; Muckenhoupt class; pointwise estimate; nonlinear elliptic equation; capacity; a-priori estimate; degeneracy; Muckenhoupt class; pointwise estimate; nonlinear elliptic equation; capacity; a-priori estimate
UR - http://eudml.org/doc/248454
ER -

References

top
  1. Skrypnik I. V., Nonlinear elliptic boundary value problems, B. G. Teubner Verlag, Leipzig, 1986. (1986) Zbl0617.35001MR0915342
  2. Skrypnik I. V., 10.1007/BF02384225, Ukrainian Math. J. 48 (1996), no. 5, 675-694. (1996) MR1417035DOI10.1007/BF02384225
  3. Heinonen J., Kilpelainen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford, 1993. (1993) MR1207810
  4. Chanillo S., Wheeden R. L., 10.2307/2374351, Amer. J. Math. 107 (1985), 1191-1226. (1985) Zbl0575.42026MR0805809DOI10.2307/2374351
  5. Kufner A., Weighted Sobolev spaces, B.G.Teubner Verlag, Leipzig, 1980. (1980) Zbl0455.46034MR0664599
  6. Gutiérrez C. E., Nelson G. S., 10.1080/03605308808820555, Commun. Partial Differential Equations 13 (1988), no. 5, 635-649. (1988) MR0919445DOI10.1080/03605308808820555
  7. Leonardi S., Skrypnik I. I., Necessary condition for regularity of a boundary point for a degenerate quasilinear parabolic equations, Catania Univ., Catania, 1995, preprint. (1995) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.