The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On weighted estimates of solutions of nonlinear elliptic problems”

On a higher-order Hardy inequality

David Eric Edmunds, Jiří Rákosník (1999)

Mathematica Bohemica

Similarity:

The Hardy inequality Ω | u ( x ) | p d ( x ) - p x ¨ c Ω | u ( x ) | p x ¨ with d ( x ) = dist ( x , Ω ) holds for u C 0 ( Ω ) if Ω n is an open set with a sufficiently smooth boundary and if 1 < p < . P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for p = 1 .

Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue

Pavel Drábek (1981)

Aplikace matematiky

Similarity:

In this paper existence and multiplicity of solutions of the elliptic problem u + λ 1 u + μ u + v u - + g ( x , u ) = f in Ω B u = 0 on Ω , are discussed provided the parameters μ and v are close to the first eigenvalue 1 . The sufficient conditions presented here are more general than those in given by S. Fučík in his aerlier paper.

Transition from decay to blow-up in a parabolic system

Pavol Quittner (1998)

Archivum Mathematicum

Similarity:

We show a locally uniform bound for global nonnegative solutions of the system u t = Δ u + u v - b u , v t = Δ v + a u in ( 0 , + ) × Ω , u = v = 0 on ( 0 , + ) × Ω , where a > 0 , b 0 and Ω is a bounded domain in n , n 2 . In particular, the trajectories starting on the boundary of the domain of attraction of the zero solution are global and bounded.