On pointwise interpolation inequalities for derivatives
Vladimir G. Maz'ya; Tatjana Olegovna Shaposhnikova
Mathematica Bohemica (1999)
- Volume: 124, Issue: 2-3, page 131-148
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMaz'ya, Vladimir G., and Shaposhnikova, Tatjana Olegovna. "On pointwise interpolation inequalities for derivatives." Mathematica Bohemica 124.2-3 (1999): 131-148. <http://eudml.org/doc/248463>.
@article{Mazya1999,
abstract = {Pointwise interpolation inequalities, in particular,
ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m,
and
|Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n,
where $\nabla _k$ is the gradient of order $k$, $\{\mathcal \{M\}\}$ is the Hardy-Littlewood maximal operator, and $I_z$ is the Riesz potential of order $z$, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M(W_p^m(\{\mathbb \{R\}\}^n)\rightarrow W_p^l(\{\mathbb \{R\}\}^n))$ is described.},
author = {Maz'ya, Vladimir G., Shaposhnikova, Tatjana Olegovna},
journal = {Mathematica Bohemica},
keywords = {Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers; Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers},
language = {eng},
number = {2-3},
pages = {131-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On pointwise interpolation inequalities for derivatives},
url = {http://eudml.org/doc/248463},
volume = {124},
year = {1999},
}
TY - JOUR
AU - Maz'ya, Vladimir G.
AU - Shaposhnikova, Tatjana Olegovna
TI - On pointwise interpolation inequalities for derivatives
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 131
EP - 148
AB - Pointwise interpolation inequalities, in particular,
ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m,
and
|Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n,
where $\nabla _k$ is the gradient of order $k$, ${\mathcal {M}}$ is the Hardy-Littlewood maximal operator, and $I_z$ is the Riesz potential of order $z$, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M(W_p^m({\mathbb {R}}^n)\rightarrow W_p^l({\mathbb {R}}^n))$ is described.
LA - eng
KW - Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers; Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers
UR - http://eudml.org/doc/248463
ER -
References
top- E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc. 13 (1913), 43-49. (1913)
- V. Maz'ya T. Shaposhnikova, Jacques Hadamard, a universal mathematician, American Mathematical Society and London Mathematical Society, Providence, RI, 1998. (1998)
- L. Nirenberg F. Trèves, 10.1002/cpa.3160160308, Comm. Pure Appl. Math. 16 (1963), 331-351. (1963) MR0163045DOI10.1002/cpa.3160160308
- P. D. Lax L. Nirenberg, 10.1002/cpa.3160190409, Comm. Pure Appl. Math. 19 (1966), 473-492. (1966) MR0206534DOI10.1002/cpa.3160190409
- V. Maz'ya A. Kufner, 10.1007/BF01171035, Manuscripta Math. 56 (1986), 89-104. (1986) MR0846988DOI10.1007/BF01171035
- D. R. Adams L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1996. (1996) MR1411441
- V. Maz'ya S. Poborchi, Differentiable functions on bad domains, World Scientific Publishing, Singapore, 1997. (1997) MR1643072
- E. Gagliardo, Ulteriori propietà di alcune classi di funzioni on più variabli, Ric. Mat. 8 (1) (1959), 24-51. (1959) MR0109295
- L. Nirenberg, On elliptic partial differential equations: Lecture II, Ann. Sc. Norm. Sup. Pisa, Ser. 3 13 (1959), 115-162. (1959) MR0109940
- L. I. Hedberg, 10.1090/S0002-9939-1972-0312232-4, Proc. Amer. Math. Soc. 36 (1972), 505-510. (1972) MR0312232DOI10.1090/S0002-9939-1972-0312232-4
- V. Maz'ya T. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Pitman, London, 1985. (1985)
- V. Maz'ya I. Verbitsky, 10.1007/BF02559606, Ark. Mat. 33 (1995), 81-115. (1995) MR1340271DOI10.1007/BF02559606
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.