On pointwise interpolation inequalities for derivatives

Vladimir G. Maz'ya; Tatjana Olegovna Shaposhnikova

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 131-148
  • ISSN: 0862-7959

Abstract

top
Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where k is the gradient of order k , is the Hardy-Littlewood maximal operator, and I z is the Riesz potential of order z , are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space M ( W p m ( n ) W p l ( n ) ) is described.

How to cite

top

Maz'ya, Vladimir G., and Shaposhnikova, Tatjana Olegovna. "On pointwise interpolation inequalities for derivatives." Mathematica Bohemica 124.2-3 (1999): 131-148. <http://eudml.org/doc/248463>.

@article{Mazya1999,
abstract = {Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where $\nabla _k$ is the gradient of order $k$, $\{\mathcal \{M\}\}$ is the Hardy-Littlewood maximal operator, and $I_z$ is the Riesz potential of order $z$, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M(W_p^m(\{\mathbb \{R\}\}^n)\rightarrow W_p^l(\{\mathbb \{R\}\}^n))$ is described.},
author = {Maz'ya, Vladimir G., Shaposhnikova, Tatjana Olegovna},
journal = {Mathematica Bohemica},
keywords = {Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers; Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers},
language = {eng},
number = {2-3},
pages = {131-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On pointwise interpolation inequalities for derivatives},
url = {http://eudml.org/doc/248463},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Maz'ya, Vladimir G.
AU - Shaposhnikova, Tatjana Olegovna
TI - On pointwise interpolation inequalities for derivatives
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 131
EP - 148
AB - Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where $\nabla _k$ is the gradient of order $k$, ${\mathcal {M}}$ is the Hardy-Littlewood maximal operator, and $I_z$ is the Riesz potential of order $z$, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M(W_p^m({\mathbb {R}}^n)\rightarrow W_p^l({\mathbb {R}}^n))$ is described.
LA - eng
KW - Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers; Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers
UR - http://eudml.org/doc/248463
ER -

References

top
  1. E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc. 13 (1913), 43-49. (1913) 
  2. V. Maz'ya T. Shaposhnikova, Jacques Hadamard, a universal mathematician, American Mathematical Society and London Mathematical Society, Providence, RI, 1998. (1998) 
  3. L. Nirenberg F. Trèves, 10.1002/cpa.3160160308, Comm. Pure Appl. Math. 16 (1963), 331-351. (1963) MR0163045DOI10.1002/cpa.3160160308
  4. P. D. Lax L. Nirenberg, 10.1002/cpa.3160190409, Comm. Pure Appl. Math. 19 (1966), 473-492. (1966) MR0206534DOI10.1002/cpa.3160190409
  5. V. Maz'ya A. Kufner, 10.1007/BF01171035, Manuscripta Math. 56 (1986), 89-104. (1986) MR0846988DOI10.1007/BF01171035
  6. D. R. Adams L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1996. (1996) MR1411441
  7. V. Maz'ya S. Poborchi, Differentiable functions on bad domains, World Scientific Publishing, Singapore, 1997. (1997) MR1643072
  8. E. Gagliardo, Ulteriori propietà di alcune classi di funzioni on più variabli, Ric. Mat. 8 (1) (1959), 24-51. (1959) MR0109295
  9. L. Nirenberg, On elliptic partial differential equations: Lecture II, Ann. Sc. Norm. Sup. Pisa, Ser. 3 13 (1959), 115-162. (1959) MR0109940
  10. L. I. Hedberg, 10.1090/S0002-9939-1972-0312232-4, Proc. Amer. Math. Soc. 36 (1972), 505-510. (1972) MR0312232DOI10.1090/S0002-9939-1972-0312232-4
  11. V. Maz'ya T. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Pitman, London, 1985. (1985) 
  12. V. Maz'ya I. Verbitsky, 10.1007/BF02559606, Ark. Mat. 33 (1995), 81-115. (1995) MR1340271DOI10.1007/BF02559606

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.