The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On pointwise interpolation inequalities for derivatives”

On a higher-order Hardy inequality

David Eric Edmunds, Jiří Rákosník (1999)

Mathematica Bohemica

Similarity:

The Hardy inequality Ω | u ( x ) | p d ( x ) - p x ¨ c Ω | u ( x ) | p x ¨ with d ( x ) = dist ( x , Ω ) holds for u C 0 ( Ω ) if Ω n is an open set with a sufficiently smooth boundary and if 1 < p < . P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for p = 1 .

Hardy inequalities in function spaces

Hans Triebel (1999)

Mathematica Bohemica

Similarity:

Let Ω be a bounded C domain in n . The paper deals with inequalities of Hardy type related to the function spaces B p q s ( Ω ) and F p q s ( Ω ) .

Linear integral equations in the space of regulated functions

Milan Tvrdý (1998)

Mathematica Bohemica

Similarity:

n this paper we investigate systems of linear integral equations in the space 𝔾 L n of n -vector valued functions which are regulated on the closed interval [ 0 , 1 ] (i.e. such that can have only discontinuities of the first kind in [ 0 , 1 ] ) and left-continuous in the corresponding open interval ( 0 , 1 ) . In particular, we are interested in systems of the form x(t) - A(t)x(0) - 01B(t,s)[d x(s)] = f(t), where f 𝔾 L n , the columns of the n × n -matrix valued function A belong to 𝔾 L n , the entries of B ( t , . ) have a bounded variation...

On systems of linear algebraic equations in the Colombeau algebra

Jan Ligęza, Milan Tvrdý (1999)

Mathematica Bohemica

Similarity:

From the fact that the unique solution of a homogeneous linear algebraic system is the trivial one we can obtain the existence of a solution of the nonhomogeneous system. Coefficients of the systems considered are elements of the Colombeau algebra ¯ of generalized real numbers. It is worth mentioning that the algebra ¯ is not a field.