The obstacle problem for functions of least gradient
William P. Ziemer; Kevin Zumbrun
Mathematica Bohemica (1999)
- Volume: 124, Issue: 2-3, page 193-219
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topZiemer, William P., and Zumbrun, Kevin. "The obstacle problem for functions of least gradient." Mathematica Bohemica 124.2-3 (1999): 193-219. <http://eudml.org/doc/248464>.
@article{Ziemer1999,
abstract = {For a given domain $\Omega \subset \mathbb \{R\}^n$, we consider the variational problem of minimizing the $L^1$-norm of the gradient on $\Omega $ of a function $u$ with prescribed continuous boundary values and satisfying a continuous lower obstacle condition $u\ge \psi $ inside $\Omega $. Under the assumption of strictly positive mean curvature of the boundary $\partial \Omega $, we show existence of a continuous solution, with Holder exponent half of that of data and obstacle.
This generalizes previous results obtained for the unconstrained and double-obstacle problems. The main new feature in the present analysis is the need to extend various maximum principles from the case of two area-minimizing sets to the case of one sub- and one superminimizing set. This we accomplish subject to a weak regularity assumption on one of the sets, sufficient to carry out the analysis. Interesting open questions include the uniqueness of solutions and a complete analysis of the regularity properties of area superminimizing sets. We provide some preliminary results in the latter direction, namely a new monotonicity principle for superminimizing sets, and the existence of “foamy” superminimizers in two dimensions.},
author = {Ziemer, William P., Zumbrun, Kevin},
journal = {Mathematica Bohemica},
keywords = {least gradient; sets of finite perimeter; area-minimizing sets; obstacle; least gradient; sets of finite perimeter; area-minimizing sets; obstacle},
language = {eng},
number = {2-3},
pages = {193-219},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The obstacle problem for functions of least gradient},
url = {http://eudml.org/doc/248464},
volume = {124},
year = {1999},
}
TY - JOUR
AU - Ziemer, William P.
AU - Zumbrun, Kevin
TI - The obstacle problem for functions of least gradient
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 193
EP - 219
AB - For a given domain $\Omega \subset \mathbb {R}^n$, we consider the variational problem of minimizing the $L^1$-norm of the gradient on $\Omega $ of a function $u$ with prescribed continuous boundary values and satisfying a continuous lower obstacle condition $u\ge \psi $ inside $\Omega $. Under the assumption of strictly positive mean curvature of the boundary $\partial \Omega $, we show existence of a continuous solution, with Holder exponent half of that of data and obstacle.
This generalizes previous results obtained for the unconstrained and double-obstacle problems. The main new feature in the present analysis is the need to extend various maximum principles from the case of two area-minimizing sets to the case of one sub- and one superminimizing set. This we accomplish subject to a weak regularity assumption on one of the sets, sufficient to carry out the analysis. Interesting open questions include the uniqueness of solutions and a complete analysis of the regularity properties of area superminimizing sets. We provide some preliminary results in the latter direction, namely a new monotonicity principle for superminimizing sets, and the existence of “foamy” superminimizers in two dimensions.
LA - eng
KW - least gradient; sets of finite perimeter; area-minimizing sets; obstacle; least gradient; sets of finite perimeter; area-minimizing sets; obstacle
UR - http://eudml.org/doc/248464
ER -
References
top- Adams D. R., Hedberg L. I., Function Spaces and Potential Theory, Springer-Verlag, 1996. (1996) MR1411441
- Biroli M., Mosco U., 10.1007/BF01766304, Ann. Mat. Pura Appl. 159 (1991), 255-281. (1991) Zbl0761.35035MR1145100DOI10.1007/BF01766304
- Bombieri E., De Giorgi E., Giusti E., 10.1007/BF01404309, Invent. Math. 7 (1969), 255-267. (1969) Zbl0183.25901MR0250205DOI10.1007/BF01404309
- Choe H. J., Lewis J. L., 10.1137/0522039, SIAM J. Math. Anal. 22 (1991), 623-638. (1991) Zbl0762.35035MR1091673DOI10.1137/0522039
- Federer H., 10.1090/S0002-9947-1959-0110078-1, Trans. Amer. Math. Soc. 93 (1959), 418-491. (1959) Zbl0089.38402MR0110078DOI10.1090/S0002-9947-1959-0110078-1
- Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. (1969) Zbl0176.00801MR0257325
- Fleming W. H. R. Rishel, 10.1007/BF01236935, Arch. Math. 11 (1960), 218-222. (1960) MR0114892DOI10.1007/BF01236935
- Frehse J., Mosco U., 10.1007/BF01647973, Manuscripta Math. 28 (1979), 219-233. (1979) Zbl0447.49006MR0535703DOI10.1007/BF01647973
- Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983, Second Ed. (1983) Zbl0562.35001MR0737190
- Giusti E., Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1985. (1985) MR0775682
- Heinonen J., Kilpeläinen, T, Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993. (1993) Zbl0780.31001MR1207810
- Lieberman G., 10.1512/iumj.1991.40.40045, Indiana Univ. Math. J. 40 (1991), 1009-1028. (1991) Zbl0767.35029MR1129339DOI10.1512/iumj.1991.40.40045
- Malý J., Ziemer W. P., 10.1090/surv/051/04, Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, 1997. (1997) MR1461542DOI10.1090/surv/051/04
- Moschen, Maria Pia, Principio di massimo forte per le frontiere di misura minima, Ann. Univ. Ferrara, Sez. VII 23 (1977), 165-168. (1977) Zbl0384.49030MR0482508
- Mu, Jun, Ziemer W. P., 10.1080/03605309108820780, Commun. Partial Differential Equations 16 (1991), 821-843. (1991) Zbl0742.35010MR1113109DOI10.1080/03605309108820780
- Michael J., Ziemer W. P., 10.1016/0362-546X(91)90120-P, Nonlinear Anal. 17 (1991), 45-73. (1991) MR1113449DOI10.1016/0362-546X(91)90120-P
- Simon L., Lectures on Geometric Measure Theory, Proc. Centre Math. Analysis, ANU Vol. 3, 1983. (1983) Zbl0546.49019MR0756417
- Simon L., 10.4310/jdg/1214441373, J. Differential Geom. 26 (1987), 327-335. (1987) Zbl0625.53052MR0906394DOI10.4310/jdg/1214441373
- Sternberg P., Ziemer W. P., The Dirchlet problem for functions of least gradient, IMA Vol. Math. Appl. 47 (1993), 197-214. (1993) MR1246349
- Sternberg P., Williams G., Ziemer W. P., Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35-60. (1992) Zbl0756.49021MR1172906
- Ziemer W. P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, New York, 1989, Graduate Texts in Math. (1989) Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.