On monotone-like mappings in Orlicz-Sobolev spaces

Vesa Mustonen; Matti Tienari

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 255-271
  • ISSN: 0862-7959

Abstract

top
We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class ( S m ) as a generalization of ( S + ) and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.

How to cite

top

Mustonen, Vesa, and Tienari, Matti. "On monotone-like mappings in Orlicz-Sobolev spaces." Mathematica Bohemica 124.2-3 (1999): 255-271. <http://eudml.org/doc/248469>.

@article{Mustonen1999,
abstract = {We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class $(S_m)$ as a generalization of $(S_+)$ and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.},
author = {Mustonen, Vesa, Tienari, Matti},
journal = {Mathematica Bohemica},
keywords = {pseudomonotone; mappings of monotone type; Orlicz-Sobolev space; almost solvability; quasi-monotone map; quasimonotone; pseudomonotone; mappings of monotone type; Orlicz-Sobolev space; almost solvability; quasi-monotone map},
language = {eng},
number = {2-3},
pages = {255-271},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On monotone-like mappings in Orlicz-Sobolev spaces},
url = {http://eudml.org/doc/248469},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Mustonen, Vesa
AU - Tienari, Matti
TI - On monotone-like mappings in Orlicz-Sobolev spaces
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 255
EP - 271
AB - We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class $(S_m)$ as a generalization of $(S_+)$ and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.
LA - eng
KW - pseudomonotone; mappings of monotone type; Orlicz-Sobolev space; almost solvability; quasi-monotone map; quasimonotone; pseudomonotone; mappings of monotone type; Orlicz-Sobolev space; almost solvability; quasi-monotone map
UR - http://eudml.org/doc/248469
ER -

References

top
  1. Adams R., Sobolev spaces, Academic Press, New York, 1975. (1975) Zbl0314.46030MR0450957
  2. Berkovits J., Mustonen V., On topological degree for mappings of monotone type, Nonlinear Anal. TMA 10 (1986), 1373-1383. (1986) MR0869546
  3. Browder F. E., 10.1090/S0273-0979-1983-15153-4, Bull. Amer. Math. Soc. 9 (1983), 1-39. (1983) Zbl0533.47053MR0699315DOI10.1090/S0273-0979-1983-15153-4
  4. Donaldson, T, 10.1016/0022-0396(71)90009-X, J. Differential Equations 10 (1971), 507-528. (1971) MR0298472DOI10.1016/0022-0396(71)90009-X
  5. Donaldson T., Trudinger N. S., 10.1016/0022-1236(71)90018-8, J. Functional Analysis 8 (1971), 52-75. (1971) Zbl0216.15702MR0301500DOI10.1016/0022-1236(71)90018-8
  6. Gossez J.-P., 10.1090/S0002-9947-1974-0342854-2, Trans. Am. Malh. Soc. 190 (1974), 163-205. (190) MR0342854DOI10.1090/S0002-9947-1974-0342854-2
  7. Gossez J.-P., Orlicz spaces and nonlinear elliptic boundary value problems, Nonlinear Analysis, Function Spaces and Applications, Teubner-Texte zur Mathematik. 1979, pp. 59-94. (1979) MR0578910
  8. Gossez J.-P., 10.4064/sm-74-1-17-24, Studia Math. 74 (1982), 17-24. (1982) Zbl0503.46018MR0675429DOI10.4064/sm-74-1-17-24
  9. Gossez J.-P., Mustonen V., 10.1016/0362-546X(87)90053-8, Nonlinear Anal. 11 (1987), 379-392. (1987) Zbl0643.49006MR0881725DOI10.1016/0362-546X(87)90053-8
  10. Hess P., On nonlinear mappings of monotone type with respect to two Banach spaces, J. Math. Pures Appl. 52 (1973), 13-26. (1973) Zbl0222.47019MR0636418
  11. Hewitt E., Stromberg K., Real and abstract analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0137.03202MR0367121
  12. Kittilä A., On the topological degree for a ciass of mappings of monotone type and applications to strongly nonlinear elliptic problems, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 91 (1994). (1994) MR1263099
  13. Krasnoseľskii M., Rutickii J., Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. (1961) MR0126722
  14. Kufner A., John O., Fučík S., Function spaces, Academia, Praha, 1977. (1977) MR0482102
  15. Landes R., 10.1016/0022-1236(80)90009-9, J. Funct. Anai. 39 (1983), 123-148. (1983) MR0597807DOI10.1016/0022-1236(80)90009-9
  16. Landes R., Mustonen V., 10.1007/BF01420527, Math. Ann. 248 (1980), 241-246. (1980) MR0575940DOI10.1007/BF01420527
  17. Landes R., Mustonen V., 10.1016/0022-247X(82)90173-1, J. Math. Anal. Appl. 88 (1982), 25-36. (1982) MR0661399DOI10.1016/0022-247X(82)90173-1
  18. Leray J., Lions J. L., 10.24033/bsmf.1617, Bul. Soc. Math. France 93 (1965), 97-107. (1965) MR0194733DOI10.24033/bsmf.1617
  19. Skrypnik I., Nonlinear higher order elliptic equations, Naukova Dumka, Kiev, 1973. (1973) Zbl0276.35043MR0435590
  20. Tienari M., A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 97 (1994). (1994) Zbl0821.47044MR2714883

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.