Elliptic problems in generalized Orlicz-Musielak spaces

Piotr Gwiazda; Piotr Minakowski; Aneta Wróblewska-Kamińska

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2019-2032
  • ISSN: 2391-5455

Abstract

top
We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.

How to cite

top

Piotr Gwiazda, Piotr Minakowski, and Aneta Wróblewska-Kamińska. "Elliptic problems in generalized Orlicz-Musielak spaces." Open Mathematics 10.6 (2012): 2019-2032. <http://eudml.org/doc/269691>.

@article{PiotrGwiazda2012,
abstract = {We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.},
author = {Piotr Gwiazda, Piotr Minakowski, Aneta Wróblewska-Kamińska},
journal = {Open Mathematics},
keywords = {Orlicz Spaces; Nonlinear elliptic equations; log-Hölder continuity; Modular topology; Orlicz spaces; nonlinear elliptic equations; modular topology},
language = {eng},
number = {6},
pages = {2019-2032},
title = {Elliptic problems in generalized Orlicz-Musielak spaces},
url = {http://eudml.org/doc/269691},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Piotr Gwiazda
AU - Piotr Minakowski
AU - Aneta Wróblewska-Kamińska
TI - Elliptic problems in generalized Orlicz-Musielak spaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2019
EP - 2032
AB - We consider a strongly nonlinear monotone elliptic problem in generalized Orlicz-Musielak spaces. We assume neither a Δ2 nor ∇2-condition for an inhomogeneous and anisotropic N-function but assume it to be log-Hölder continuous with respect to x. We show the existence of weak solutions to the zero Dirichlet boundary value problem. Within the proof the L ∞-truncation method is coupled with a special version of the Minty-Browder trick for non-reflexive and non-separable Banach spaces.
LA - eng
KW - Orlicz Spaces; Nonlinear elliptic equations; log-Hölder continuity; Modular topology; Orlicz spaces; nonlinear elliptic equations; modular topology
UR - http://eudml.org/doc/269691
ER -

References

top
  1. [1] Adams R.A., Fournier J.F., Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.), 140, Elsevier/Academic Press, Amsterdam, 2003 
  2. [2] Benkirane A., Douieb J., Ould Mohamedhen Val M., An approximation theorem in Musielak-Orlicz-Sobolev spaces, Comment. Math. Prace Mat., 2011, 51(1), 109–120 Zbl1294.46025
  3. [3] Benkirane A., Ould Mohamedhen Val M., Some approximation properties in Musielak-Orlicz-Sobolev spaces, Thai J. Math., 2012, 10(2), 371–381 Zbl1264.46024
  4. [4] Donaldson T, Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations, 1971, 10(3), 507–528 http://dx.doi.org/10.1016/0022-0396(71)90009-X[Crossref] 
  5. [5] Gossez J.-P., Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 1982, 74(1), 17–24 Zbl0503.46018
  6. [6] Gossez J.-P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 1974, 190, 163–205 http://dx.doi.org/10.1090/S0002-9947-1974-0342854-2[Crossref] Zbl0239.35045
  7. [7] Gossez J.-P., Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, In: Nonlinear Analysis, Function Spaces and Applications, Horni Bradlo, 1978, Teubner, Leipzig, 1979, 59–94 
  8. [8] Gossez J.-P., Mustonen V., Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal., 1987, 11(3), 379–392 http://dx.doi.org/10.1016/0362-546X(87)90053-8[Crossref] 
  9. [9] Gwiazda P., Swierczewska-Gwiazda A., On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 2008, 32(1), 103–114 Zbl1172.35352
  10. [10] Gwiazda P., Swierczewska-Gwiazda A., On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 2008, 18(7), 1073–1092 http://dx.doi.org/10.1142/S0218202508002954[Crossref][WoS] Zbl1152.35332
  11. [11] Gwiazda P., Swierczewska-Gwiazda A., Wróblewska A., Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 2010, 33(2), 125–137 [WoS] Zbl1180.35427
  12. [12] Gwiazda P., Swierczewska-Gwiazda A., Wróblewska A., Generalized Stokes system in Orlicz spaces, Discrete Contin. Dyn. Syst., 2012, 32(6), 2125–2146 http://dx.doi.org/10.3934/dcds.2012.32.2125[Crossref] Zbl1298.35145
  13. [13] Gwiazda P., Wittbold P., Wróblewska A., Zimmermann A., Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations, 2012, 253(2), 635–666 http://dx.doi.org/10.1016/j.jde.2012.03.025[Crossref] Zbl1245.35039
  14. [14] Gwiazda P., Wittbold P., Wróblewska-Kaminska A., Zimmermann A., Corrigendum to ”Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces” [J. Differential Equations 253 (2) (2012) 635–666], J. Differential Equations, 2012, 253(9), 2734–2738 http://dx.doi.org/10.1016/j.jde.2012.07.009[Crossref] Zbl1245.35039
  15. [15] Gwiazda P., Swierczewska-Gwiazda A., Parabolic equations in anisotropic Orlicz spaces with general N-functions, In: Progr. Nonlinear Differential Equations Appl., 80, Birkhäuser, Boston, 301–311 Zbl1250.35122
  16. [16] Krasnosel’skiĭ M.A., Rutickiĭ Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961 
  17. [17] Landes R., Mustonen V., Pseudomonotone mappings in Sobolev-Orlicz spaces and nonlinear boundary value problems on unbounded domains, J. Math. Anal. Appl., 1982, 88(1), 25–36 http://dx.doi.org/10.1016/0022-247X(82)90173-1[Crossref] Zbl0492.35015
  18. [18] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer, Berlin, 1983 
  19. [19] Mustonen V., Tienari M., On monotone-like mappings in Orlicz-Sobolev spaces, Math. Bohem., 1999, 124(2–3), 255–271 Zbl0940.47042
  20. [20] Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Ser. Math. Appl., 27, Oxford University Press, Oxford, 2004 Zbl1088.35051
  21. [21] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 Zbl0724.46032
  22. [22] Sohr H., The Navier-Stokes Equations, Birkhäuser Adv. Texts Basler Lehrbucher, Birkhäuser, Basel, 2001 http://dx.doi.org/10.1007/978-3-0348-8255-2[Crossref] 
  23. [23] Tienari M., A Degree Theory for a Class of Mappings of Monotone Type in Orlicz-Sobolev Spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 97, Finnish Academy of Science and Letters, Helsinki, 1994 
  24. [24] Wróblewska A., Steady flow of non-Newtonian fluids - monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., 2010, 72(11), 4136–4147 http://dx.doi.org/10.1016/j.na.2010.01.045[Crossref][WoS] Zbl1200.35234
  25. [25] Wróblewska A., Existence results for unsteady flows of nonhomogeneous non-Newtonian incompressible fluids - monotonicity methods in generalized Orlicz spaces, preprint available at: http://mmns.mimuw.edu.pl/preprints/2011-015.pdf Zbl1200.35234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.