Modularity of an odd icosahedral representation

Arnaud Jehanne; Michael Müller

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 2, page 475-482
  • ISSN: 1246-7405

Abstract

top
In this paper, we prove that the representation ρ from G in GL 2 ( ) with image A 5 in PGL 2 ( A 5 ) corresponding to the example 16 in [B-K] is modular. This representation has conductor 5203 and determinant χ - 43 ; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].

How to cite

top

Jehanne, Arnaud, and Müller, Michael. "Modularity of an odd icosahedral representation." Journal de théorie des nombres de Bordeaux 12.2 (2000): 475-482. <http://eudml.org/doc/248491>.

@article{Jehanne2000,
abstract = {In this paper, we prove that the representation $\rho $ from $G_\mathbb \{Q\}$ in GL$_2(\mathbb \{C\})$ with image $A_5$ in PGL$_2(A_5)$ corresponding to the example $16$ in [B-K] is modular. This representation has conductor $5203$ and determinant $\{\chi _\{-43\}\}$; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].},
author = {Jehanne, Arnaud, Müller, Michael},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {475-482},
publisher = {Université Bordeaux I},
title = {Modularity of an odd icosahedral representation},
url = {http://eudml.org/doc/248491},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Jehanne, Arnaud
AU - Müller, Michael
TI - Modularity of an odd icosahedral representation
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 475
EP - 482
AB - In this paper, we prove that the representation $\rho $ from $G_\mathbb {Q}$ in GL$_2(\mathbb {C})$ with image $A_5$ in PGL$_2(A_5)$ corresponding to the example $16$ in [B-K] is modular. This representation has conductor $5203$ and determinant ${\chi _{-43}}$; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].
LA - eng
UR - http://eudml.org/doc/248491
ER -

References

top
  1. [B-K] J. Basmaji, I. Kiming, A table of A5-fields. In [Fre2], 37-46. Zbl0837.11066MR1322317
  2. [Buh] J. Buhler, Icosahedral Galois representations. Lecture note in math. 654, Springer-Verlag (1978). Zbl0374.12002MR506171
  3. [B-D-SB-T] K. Buzzard, M. Dickinson, N. Shepherd-Barron, R. Taylor.On icosahedral Artin representations. Preprint. 
  4. [B-S] K. Buzzard, W. Stein.A mod 5 approach to the modularity of icosahedral Galois representations. To appear in Pacific J. Math. Zbl1054.11028MR1897901
  5. [B-T] K. Buzzard, R. TaylorCompanion forms and weight one forms. Annals of Math149 (1999), 905-919. Zbl0965.11019MR1709306
  6. [Cre] J. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press, Cambridge (1992). Zbl0758.14042MR1201151
  7. [D-D-T] H. Darmon, F. Diamond, R. Taylor.Fermat's Last Theorem. In: Current Development in Mathematics, International PressBoston (1995), 1-170. Zbl0877.11035
  8. [D-S] P. Deligne, J.-P. Serre, Formes modulaires de poids 1. Ann. scient. Éc. Norm. Sup.4e série 7 (1974), 507-530. Zbl0321.10026MR379379
  9. [Edi] S. Edixhoven, The weight in Serre's conjecture on modular forms. Invent. math.109 (1992), 563-594. Zbl0777.11013MR1176206
  10. [Fre1] G. Frey, Construction and arithmetical applications of modular forms of low weight. CRM Proceeding and Lecture Notes4 (1994), 1-21. Zbl0814.11027MR1260951
  11. [Fre2] G. Frey, On Artin's conjecture for odd 2-dimensional representations. Lecture note in math. 1585, Springer-Verlag (1994). Zbl0801.00004MR1322315
  12. [Jeh] A. Jehanne, Realization over Q of the groups Ã5 and Â5. J. Number Th., to appear. Zbl0984.12003
  13. [Kim] I. Kiming, On the experimental verification of the Artin conjecture for 2-dimensional odd Galois representations over Q. Lifting of 2-dimensional projective Galois representations over Q. In [Fre2], 1-36. Zbl0839.11056MR1322316
  14. [K-W] I. Kiming, X. Wang, Examples of 2-dimensional odd Galois repesentation of A5type over Q satisfying Artin conjecture. In [Fre2], 109-121. Zbl0841.11065MR1322321
  15. [Lan] R.-P. LanglandsBase change for GL(2). Annals of Math. Studies96, Princeton Univ. Press, Princeton (1980). Zbl0444.22007MR574808
  16. [Mer] L. Merel, Universal Fourier expansions of modular forms. In [Fre2], 59-94. Zbl0844.11033MR1322319
  17. [PARI] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, PARI computation system. 
  18. [Rib] K. Ribet, Report on mod representations of Gal(/Q). Proc. of Symp. in Pure Math.55, Part 2 (1994), 179-230. Zbl0822.11034MR1265566
  19. [Ser1] J.-P. Serre, Modular forms of weight one and Galois representations. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham,1975), pp.193-268. Edited by A. Frohlich, Academic Press, London (1977). Zbl0366.10022MR450201
  20. [Ser2] J.-P. Serre, Corps locaux. (3ème edition), Hermann, Paris (1980). MR354618
  21. [Ser3] J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(/Q). Duke math. Jour.54 (1987), 179-230. Zbl0641.10026MR885783
  22. [SB-T] N. Shepherd-Barron, R. Taylor, Mod 2 and mod 5 icosahedral representations. J. AMS10 (1997), 283-298. Zbl1015.11019MR1415322
  23. [Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton, New Jersey (1971). Zbl0872.11023MR314766
  24. [Tay1] R. TaylorIcosahedral Galois representations. Pacific Jour. of Math., Olga Taussky-Todd memorial issue (1997), 337-347. Zbl0942.11031MR1610820
  25. [Tay2] R. TaylorIcosahedral Galois representations II. Preprint. 
  26. [Tun] J. TunnelArtin's conjecture for representations of octahedral type. Bull. AMS5 (1981), 173-175. Zbl0475.12016MR621884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.