Modularity of an odd icosahedral representation
Arnaud Jehanne; Michael Müller
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 475-482
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topJehanne, Arnaud, and Müller, Michael. "Modularity of an odd icosahedral representation." Journal de théorie des nombres de Bordeaux 12.2 (2000): 475-482. <http://eudml.org/doc/248491>.
@article{Jehanne2000,
abstract = {In this paper, we prove that the representation $\rho $ from $G_\mathbb \{Q\}$ in GL$_2(\mathbb \{C\})$ with image $A_5$ in PGL$_2(A_5)$ corresponding to the example $16$ in [B-K] is modular. This representation has conductor $5203$ and determinant $\{\chi _\{-43\}\}$; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].},
author = {Jehanne, Arnaud, Müller, Michael},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {475-482},
publisher = {Université Bordeaux I},
title = {Modularity of an odd icosahedral representation},
url = {http://eudml.org/doc/248491},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Jehanne, Arnaud
AU - Müller, Michael
TI - Modularity of an odd icosahedral representation
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 475
EP - 482
AB - In this paper, we prove that the representation $\rho $ from $G_\mathbb {Q}$ in GL$_2(\mathbb {C})$ with image $A_5$ in PGL$_2(A_5)$ corresponding to the example $16$ in [B-K] is modular. This representation has conductor $5203$ and determinant ${\chi _{-43}}$; its modularity was not yet proved, since this representation does not satisfy the hypothesis of the theorems of [B-D-SB-T] and [Tay2].
LA - eng
UR - http://eudml.org/doc/248491
ER -
References
top- [B-K] J. Basmaji, I. Kiming, A table of A5-fields. In [Fre2], 37-46. Zbl0837.11066MR1322317
- [Buh] J. Buhler, Icosahedral Galois representations. Lecture note in math. 654, Springer-Verlag (1978). Zbl0374.12002MR506171
- [B-D-SB-T] K. Buzzard, M. Dickinson, N. Shepherd-Barron, R. Taylor.On icosahedral Artin representations. Preprint.
- [B-S] K. Buzzard, W. Stein.A mod 5 approach to the modularity of icosahedral Galois representations. To appear in Pacific J. Math. Zbl1054.11028MR1897901
- [B-T] K. Buzzard, R. TaylorCompanion forms and weight one forms. Annals of Math149 (1999), 905-919. Zbl0965.11019MR1709306
- [Cre] J. Cremona, Algorithms for Modular Elliptic Curves. Cambridge University Press, Cambridge (1992). Zbl0758.14042MR1201151
- [D-D-T] H. Darmon, F. Diamond, R. Taylor.Fermat's Last Theorem. In: Current Development in Mathematics, International PressBoston (1995), 1-170. Zbl0877.11035
- [D-S] P. Deligne, J.-P. Serre, Formes modulaires de poids 1. Ann. scient. Éc. Norm. Sup.4e série 7 (1974), 507-530. Zbl0321.10026MR379379
- [Edi] S. Edixhoven, The weight in Serre's conjecture on modular forms. Invent. math.109 (1992), 563-594. Zbl0777.11013MR1176206
- [Fre1] G. Frey, Construction and arithmetical applications of modular forms of low weight. CRM Proceeding and Lecture Notes4 (1994), 1-21. Zbl0814.11027MR1260951
- [Fre2] G. Frey, On Artin's conjecture for odd 2-dimensional representations. Lecture note in math. 1585, Springer-Verlag (1994). Zbl0801.00004MR1322315
- [Jeh] A. Jehanne, Realization over Q of the groups Ã5 and Â5. J. Number Th., to appear. Zbl0984.12003
- [Kim] I. Kiming, On the experimental verification of the Artin conjecture for 2-dimensional odd Galois representations over Q. Lifting of 2-dimensional projective Galois representations over Q. In [Fre2], 1-36. Zbl0839.11056MR1322316
- [K-W] I. Kiming, X. Wang, Examples of 2-dimensional odd Galois repesentation of A5type over Q satisfying Artin conjecture. In [Fre2], 109-121. Zbl0841.11065MR1322321
- [Lan] R.-P. LanglandsBase change for GL(2). Annals of Math. Studies96, Princeton Univ. Press, Princeton (1980). Zbl0444.22007MR574808
- [Mer] L. Merel, Universal Fourier expansions of modular forms. In [Fre2], 59-94. Zbl0844.11033MR1322319
- [PARI] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, PARI computation system.
- [Rib] K. Ribet, Report on mod representations of Gal(/Q). Proc. of Symp. in Pure Math.55, Part 2 (1994), 179-230. Zbl0822.11034MR1265566
- [Ser1] J.-P. Serre, Modular forms of weight one and Galois representations. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham,1975), pp.193-268. Edited by A. Frohlich, Academic Press, London (1977). Zbl0366.10022MR450201
- [Ser2] J.-P. Serre, Corps locaux. (3ème edition), Hermann, Paris (1980). MR354618
- [Ser3] J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(/Q). Duke math. Jour.54 (1987), 179-230. Zbl0641.10026MR885783
- [SB-T] N. Shepherd-Barron, R. Taylor, Mod 2 and mod 5 icosahedral representations. J. AMS10 (1997), 283-298. Zbl1015.11019MR1415322
- [Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton, New Jersey (1971). Zbl0872.11023MR314766
- [Tay1] R. TaylorIcosahedral Galois representations. Pacific Jour. of Math., Olga Taussky-Todd memorial issue (1997), 337-347. Zbl0942.11031MR1610820
- [Tay2] R. TaylorIcosahedral Galois representations II. Preprint.
- [Tun] J. TunnelArtin's conjecture for representations of octahedral type. Bull. AMS5 (1981), 173-175. Zbl0475.12016MR621884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.