Suites doubles de basse complexité
Valérie Berthé; Laurent Vuillon
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 1, page 179-208
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBerthé, Valérie, and Vuillon, Laurent. "Suites doubles de basse complexité." Journal de théorie des nombres de Bordeaux 12.1 (2000): 179-208. <http://eudml.org/doc/248507>.
@article{Berthé2000,
abstract = {Nous donnons une représentation géométrique des suites doubles uniformément récurrentes de fonction de complexité rectangulaire $mn+n$. Nous montrons que ces suites codent l’action d’une $\mathbb \{Z\}^2$-action définie par deux rotations irrationnelles sur le cercle unité. La preuve repose sur une étude des suites doubles dont les lignes sont des suite sturmiennes de même langage.},
author = {Berthé, Valérie, Vuillon, Laurent},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {two-dimensional sequences; low block-complexity; Sturmian sequences; irrational rotations},
language = {fre},
number = {1},
pages = {179-208},
publisher = {Université Bordeaux I},
title = {Suites doubles de basse complexité},
url = {http://eudml.org/doc/248507},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Berthé, Valérie
AU - Vuillon, Laurent
TI - Suites doubles de basse complexité
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 179
EP - 208
AB - Nous donnons une représentation géométrique des suites doubles uniformément récurrentes de fonction de complexité rectangulaire $mn+n$. Nous montrons que ces suites codent l’action d’une $\mathbb {Z}^2$-action définie par deux rotations irrationnelles sur le cercle unité. La preuve repose sur une étude des suites doubles dont les lignes sont des suite sturmiennes de même langage.
LA - fre
KW - two-dimensional sequences; low block-complexity; Sturmian sequences; irrational rotations
UR - http://eudml.org/doc/248507
ER -
References
top- [1] P. Alessandri, Codages de rotations et basses complexités. Université Aix-Marseille II, Thèse, 1996.
- [2] P. Alessandri, V. Berthé, Three distance theorems and combinatorics on words. Enseig. Math.44 (1998), 103-132. Zbl0997.11051MR1643286
- [3] J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc.1 (1994), 133-143. Zbl0803.68094MR1318964
- [4] V. berthé, L. Vuillon, A two-dimensional generalization of Sturmian sequences: tilings and rotations. Prétirage97-19, IML (Marseille). Zbl0970.68124
- [5] J. Berstel, Recent results in Sturmian words. Developments in Language Theory II (Dassow, Rozenberg, Salomaa eds) World Scientific1996, pages 13-24. Zbl1096.68689MR1466181
- [6] J. Cassaigne, Double sequences with complexity mn+1. J. Auto. Lang. Comb.4 (1999), 153-170. Zbl0971.68123MR1719387
- [7] E M. Coven, G.A.Hedlund, Sequences with minimal block growth. Math. Systems Theory7 (1973), 138-153. Zbl0256.54028MR322838
- [8] C. Epifanio, P. Mignosi, M. Koskas, On a conjecture on bidimensional words, prépublication, 1999. Zbl1040.68076
- [9] S. FerencziComplexity of sequences and dynamical systems. Discrète Math.206 (1999), 145-154. Zbl0936.37008MR1665394
- [10] M. Lothaire, Algebraic Combinatorics on Words. Chapitre 2: Sturmian words, par J. Berstel et P. Séébold. Zbl1001.68093MR1905123
- [11] F. Mignosi, On the number of factors of Sturmian words. Theoret. Comput. Sci.82 (1991), 71-84. Zbl0728.68093MR1112109
- [12] M. Morse, G.A. Hedlund, Symbolic dynamics. Amer. J. Math.60 (1938), 815-866. Zbl0019.33502MR1507944JFM64.0798.04
- [13] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
- [14] D. RazafyAndriamampianina, Nombre de facteurs d'une suite infinie. Prépublication, 1994.
- [15] J.W. Sander, R. Tijdeman, Low complexity functions and convez sets in Zk. Mathem. Zeitschrift, à paraître. Zbl1022.37011
- [16] J.W. Sander, R. Tijdeman, The complexity of functions on lattices. Theoret. Comput Sci., à paraître. Zbl1005.68118
- [17] J.W. Sander, R. Tijdeman, The rectangle complexity of functions on two-dimensional lattices. Theoret. Comput Sci., à paraître. Zbl0989.68062
- [18] N.B. Slater, Gaps and steps for the sequence nθ mod 1. Proc. Cambridge Philos. Soc.63 (1967), 1115-1123. Zbl0178.04703
- [19] V.T. Sós, On the distribution mod 1 of the sequence nα. Ann. Univ. Sci. Budapest, Eötvös Sect. Math.1 (1958), 127-134. Zbl0094.02903
- [20] J. Surányi, Über die Anordnung der Vielfachen einer reellen Zahl mod 1. Ann. Univ. Sci. Budapest, Eôtvôs Sect. Math.1 (1958), 107-111. Zbl0094.02904
- [21] S. Swierczkowski, On successive settings of an arc on the circumference of a circle. Fundamenta Math.46 (1958), 187-189. Zbl0085.27203MR104651
- [22] R. Tijdeman, Communication privée.
- [23] L. Vuillon, Combinatoire des motifs d'une suite sturmienne bidimensionnelle. Theoret. Comput. Sci.209 (1998), 261-285. Zbl0913.68206MR1647534
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.