Discrete planes, -actions, Jacobi-Perron algorithm and substitutions
Pierre Arnoux[1]; Valérie Berthé[1]; Shunji Ito[2]
- [1] Institut de Mathématiques de Luminy, Campus de Luminy, Case 901, 13288 Marseille Cedex 9 (France)
- [2] Tsuda College, Tsuda Machi, Kodaira, Tokyo 187 (Japon)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 305-349
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArnoux, Pierre, Berthé, Valérie, and Ito, Shunji. "Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions." Annales de l’institut Fourier 52.2 (2002): 305-349. <http://eudml.org/doc/115982>.
@article{Arnoux2002,
abstract = {We introduce two-dimensional substitutions generating two-dimensional sequences related
to discrete approximations of irrational planes. These two-dimensional substitutions are
produced by the classical Jacobi-Perron continued fraction algorithm, by the way of
induction of a $\{\mathbb \{Z\}\}^2$-action by rotations on the circle. This gives a new geometric
interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space
of $\{\mathbb \{Z\}\}^\{2\}$-actions by rotations.},
affiliation = {Institut de Mathématiques de Luminy, Campus de Luminy, Case 901, 13288 Marseille Cedex 9 (France); Institut de Mathématiques de Luminy, Campus de Luminy, Case 901, 13288 Marseille Cedex 9 (France); Tsuda College, Tsuda Machi, Kodaira, Tokyo 187 (Japon)},
author = {Arnoux, Pierre, Berthé, Valérie, Ito, Shunji},
journal = {Annales de l’institut Fourier},
keywords = {substitutions; generalized continued fractions; discrete plans; tilings; Jacobi-Perron algorithm; induction; $\{\mathbb \{Z\}\}^2$-actions; two-dimensional sequences; discrete planes; -actions},
language = {eng},
number = {2},
pages = {305-349},
publisher = {Association des Annales de l'Institut Fourier},
title = {Discrete planes, $\{\mathbb \{Z\}\}^2$-actions, Jacobi-Perron algorithm and substitutions},
url = {http://eudml.org/doc/115982},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Arnoux, Pierre
AU - Berthé, Valérie
AU - Ito, Shunji
TI - Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 305
EP - 349
AB - We introduce two-dimensional substitutions generating two-dimensional sequences related
to discrete approximations of irrational planes. These two-dimensional substitutions are
produced by the classical Jacobi-Perron continued fraction algorithm, by the way of
induction of a ${\mathbb {Z}}^2$-action by rotations on the circle. This gives a new geometric
interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space
of ${\mathbb {Z}}^{2}$-actions by rotations.
LA - eng
KW - substitutions; generalized continued fractions; discrete plans; tilings; Jacobi-Perron algorithm; induction; ${\mathbb {Z}}^2$-actions; two-dimensional sequences; discrete planes; -actions
UR - http://eudml.org/doc/115982
ER -
References
top- P. Arnoux, Chaos from order, a worked out example, Complex Systems (2001), 1-67, Kluwer Academic Publ. Zbl1333.37006
- P. Arnoux, Sturmian sequences, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag Zbl1333.37006
- P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
- P. Arnoux, S. Ferenczi, P. Hubert, Trajectories of rotations, Acta Arith. 87 (1999), 209-217 Zbl0921.11033MR1668554
- P. Arnoux, S. Ito, Y. Sano, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206 Zbl0987.11013MR1828491
- P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité , Bull. Soc. Math. France 119 (1991), 199-215 Zbl0789.28011MR1116845
- J. Berstel, Tracé de droites, fractions continues et morphismes itérés, Mots, Lang. Raison. Calc. (1990), 298-309, Éditions Hermès, Paris
- J. Berstel, Recent results in Sturmian words, Developments in Language Theory II (1996), 13-24, World Scientific Zbl1096.68689
- J. Berstel, P. Séébold, Chapter 2: Sturmian words in M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press
- V. Berthé, L. Vuillon, Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math. 223 (2000), 27-53 Zbl0970.68124MR1782038
- V. Berthé, L. Vuillon, Suites doubles de basse complexité, J. Th. Nombres Bordeaux 12 (2000), 179-208 Zbl1018.37010MR1827847
- V. Berthé, L. Vuillon, Palindromes and two-dimensional Sturmian sequences, J. Auto. Lang. Comp. 6 (2001), 121-138 Zbl1002.11026MR1828855
- A.J. Brentjes, Multi-dimensional continued fraction algorithms, 145 (1981), Matematisch Centrum, Amsterdam Zbl0471.10024
- A. Broise, Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France 124 (1999), 97-139 Zbl0857.11035MR1395008
- A. Broise-Alamichei, Y. Guivarc'h, Exposants caratéristiques de l'algorithme de Jacobi-Perron et la transformation associée, Ann. Inst. Fourier 51 (2001), 565-686 Zbl1012.11060MR1838461
- T.C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15-21 Zbl0804.11021MR1205889
- V. Canterini, A. Siegel, Geometric representations of primitive substitutions of Pisot type Zbl1142.37302MR1852097
- J.H. Conway, C. Radin, Quaquaversal tilings and rotations, Inventiones Math. 132 (1998), 179-188 Zbl0913.52009MR1618635
- F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89-101 Zbl0895.68087MR1489074
- J. Françon, Sur la topologie d'un plan arithmétique, Th. Comput. Sci. 156 (1996), 159-176 Zbl0871.68165MR1382845
- D. Giammarresi, A. Restivo, Two-dimensional Languages, Handbook of Formal languages vol. 3 (1997), Springer-Verlag, Berlin Zbl0843.68054
- C. Goodman-Strauss, Matching rules and substitution tilings, Annals of Math. 147 (1998), 181-223 Zbl0941.52018MR1609510
- S. Ito, M. Kimura, On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991), 461-486 Zbl0734.28010MR1137652
- S. Ito, M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), 441-472 Zbl0805.11056MR1247666
- S. Ito, M. Ohtsuki, Parallelogram tilings and Jacobi-Perron algorithm, Tokyo J. Math. 17 (1994), 33-58 Zbl0805.52011MR1279568
- A.B. Katok, A.M. Stepin, Approximations in ergodic theory, Usp. Math. Nauk. (in Russian) 22 (1967), 81-106 Zbl0172.07202MR219697
- A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000), 195-224 Zbl0968.28005MR1793161
- M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42 Zbl0022.34003MR745
- N. Priebe, Towards a characterization of self-similar tilings in terms of derived Voronoï tessellations, Geom. Dedicata 79 (2000), 239-265 Zbl1048.37014MR1755727
- M. Queffélec, Substitution dynamical systems, Spectral analysis 1294 (1987), Springer-Verlag Zbl0642.28013
- C. Radin, Space tilings and substitutions, Geom. Dedicata 55 (1995), 257-264 Zbl0835.52018MR1334449
- C. Radin, Miles of tiles, Vol. 1 (1999), Amer. Math. Soc., Providence Zbl0932.52005MR1707270
- C. Radin, A homeomorphism invariant for substitution tiling spaces Zbl0997.37006MR1898159
- G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
- J.-P. Reveillès, Combinatorial pieces in digital lines and planes, Vision geometry IV (San Diego, CA, 1995) 2573, 23-24
- O. Salon, Suites automatiques à multi-indices, Sém. Th. Nombres Bordeaux exp. no 4 (1986-1987), Univ. Bordeaux I Zbl0653.10049
- O. Salon, Suites automatiques à multi-indices et algébricité, C. R. Acad. Sci. Paris, Sér. I Math. 305 (1987), 501-504 Zbl0628.10007MR916320
- M. Senechal, Quasicrystals and geometry, (1995), Cambridge University Press Zbl0828.52007MR1340198
- F. Schweiger, The metrical theory of Jacobi-Perron algorithm, 334 (1973), Springer-Verlag Zbl0287.10041MR345925
- J.-L. Verger-Gaugry, J.-P. Gazeau, Geometric study of the set of beta-integers with a Perron number, a -number and a Pisot number and mathematical quasicrystals, (2000)
- L. Vuillon, Combinatoire des motifs d'une suite sturmienne bidimensionnelle, Th. Comput. Sci. 209 (1998), 261-285 Zbl0913.68206MR1647534
- A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Th. Nombres Bordeaux 10 (1998), 135-162 Zbl0918.11048MR1827290
- A.B. Katok, A.M. Stepin, Approximations in ergodic theory, Russian Math. Surveys 22 (1967), 76-102 Zbl0172.07202MR219697
Citations in EuDML Documents
top- N. Pytheas Fogg, Substitutions par des motifs en dimension 1
- Valérie Berthé, Discrete geometry and numeration
- Hiromi Ei, Shunji Ito, Hui Rao, Atomic surfaces, tilings and coincidences II. Reducible case
- Valérie Berthé, Timo Jolivet, Anne Siegel, Connectedness of fractals associated with Arnoux–Rauzy substitutions
- Julien Bernat, Study of irreducible balanced pairs for substitutive languages
- Pierre Arnoux, Valérie Berthé, Arnaud Hilion, Anne Siegel, Fractal representation of the attractive lamination of an automorphism of the free group
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.