On the cokernel of the Witt decomposition map
Journal de théorie des nombres de Bordeaux (2000)
- Volume: 12, Issue: 2, page 489-501
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNebe, Gabriele. "On the cokernel of the Witt decomposition map." Journal de théorie des nombres de Bordeaux 12.2 (2000): 489-501. <http://eudml.org/doc/248510>.
@article{Nebe2000,
abstract = {Let $R$ be a Dedekind domain with field of fractions $K$ and $G$ a finite group. We show that, if $R$ is a ring of $p$-adic integers, then the Witt decomposition map $\delta $ between the Grothendieck-Witt group of bilinear $KG$-modules and the one of finite bilinear $RG$-modules is surjective. For number fields $K, \delta $ is also surjective, if $G$ is a nilpotent group of odd order, but there are counterexamples for groups of even order.},
author = {Nebe, Gabriele},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Grothendick-Witt group; equivariant Witt group},
language = {eng},
number = {2},
pages = {489-501},
publisher = {Université Bordeaux I},
title = {On the cokernel of the Witt decomposition map},
url = {http://eudml.org/doc/248510},
volume = {12},
year = {2000},
}
TY - JOUR
AU - Nebe, Gabriele
TI - On the cokernel of the Witt decomposition map
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 489
EP - 501
AB - Let $R$ be a Dedekind domain with field of fractions $K$ and $G$ a finite group. We show that, if $R$ is a ring of $p$-adic integers, then the Witt decomposition map $\delta $ between the Grothendieck-Witt group of bilinear $KG$-modules and the one of finite bilinear $RG$-modules is surjective. For number fields $K, \delta $ is also surjective, if $G$ is a nilpotent group of odd order, but there are counterexamples for groups of even order.
LA - eng
KW - Grothendick-Witt group; equivariant Witt group
UR - http://eudml.org/doc/248510
ER -
References
top- [ARS 97] M. Auslander, I. Reiten, S.O. Smalø, Representation theory of Artin algebras. Cambridge studies in advanced math., 36Camb. Univers. Press (1997). Zbl0396.16007MR1476671
- [CuR 81] C.W. Curtis, I. Reiner, Methods of representation theory, with applications to finite groups and orders. Vol. I. John Wiley & Sons. (1981). Zbl0469.20001MR632548
- [Dre 75] A.W.M. Dress, Induction and structure theorems for orthogonal representations of finite groups. Annals of Math.102 (1975), 291-325. Zbl0315.20007MR387392
- [MiH 73] J. Milnor, D. Husemoller, Symmetric bilinear forms. Springer Ergebnisse73 (1973). Zbl0292.10016MR506372
- [Knu 91] M.-A. Knus, Quadratic and Hermitian Forms over Rings. Springer Grundlehren 294 (1991). Zbl0756.11008MR1096299
- [Miy 90] M. Miyamoto, Equivariant Witt Groups of Finite Groups of Odd Order. J. Algebra133 (1990), 197-210. Zbl0707.20004MR1063391
- [Mor 88] J.F. Morales, Maximal Hermitian forms over ZG. Comment. Math. Helv.63 (1988), no.2, 209-225. Zbl0654.10023MR948778
- [Mor 90] J.F. Morales, Equivariant Witt groups. Canad. Math. Bull.33 (1990), 207-218. Zbl0674.10020MR1060376
- [Neb 99] G. Nebe, Orthogonale Darstellungen endlicher Gruppen und Gruppenringe, Habilitationsschrift, RWTH Aachen, Aachener Beiträge zur Mathematik26, VerlagMainzAachen (1999). Zbl1052.20005MR1732361
- [Rei 75] I. Reiner, Maximal orders. Academic Press (1975). Zbl0305.16001MR1972204
- [Scha 85] W. Scharlau, Quadratic and Hermitian Forms. Springer Grundlehren270 (1985). Zbl0584.10010MR770063
- [Ser 77] J.-P. Serre, Linear Representations of Finite Groups. Springer GTM42 (1977). Zbl0355.20006MR450380
- [Tho 84] J.G. Thompson, Bilinear Forms in Characteristic p and the Frobenius-Schur Indicator. Springer LNM 1185 (1984), 221-230.
- [Was 82] L.C. Washington, Introduction to cyclotomic fields. Springer GTM 83 (1982). Zbl0484.12001MR718674
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.