On the cokernel of the Witt decomposition map

Gabriele Nebe

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 2, page 489-501
  • ISSN: 1246-7405

Abstract

top
Let R be a Dedekind domain with field of fractions K and G a finite group. We show that, if R is a ring of p -adic integers, then the Witt decomposition map δ between the Grothendieck-Witt group of bilinear K G -modules and the one of finite bilinear R G -modules is surjective. For number fields K , δ is also surjective, if G is a nilpotent group of odd order, but there are counterexamples for groups of even order.

How to cite

top

Nebe, Gabriele. "On the cokernel of the Witt decomposition map." Journal de théorie des nombres de Bordeaux 12.2 (2000): 489-501. <http://eudml.org/doc/248510>.

@article{Nebe2000,
abstract = {Let $R$ be a Dedekind domain with field of fractions $K$ and $G$ a finite group. We show that, if $R$ is a ring of $p$-adic integers, then the Witt decomposition map $\delta $ between the Grothendieck-Witt group of bilinear $KG$-modules and the one of finite bilinear $RG$-modules is surjective. For number fields $K, \delta $ is also surjective, if $G$ is a nilpotent group of odd order, but there are counterexamples for groups of even order.},
author = {Nebe, Gabriele},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Grothendick-Witt group; equivariant Witt group},
language = {eng},
number = {2},
pages = {489-501},
publisher = {Université Bordeaux I},
title = {On the cokernel of the Witt decomposition map},
url = {http://eudml.org/doc/248510},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Nebe, Gabriele
TI - On the cokernel of the Witt decomposition map
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 489
EP - 501
AB - Let $R$ be a Dedekind domain with field of fractions $K$ and $G$ a finite group. We show that, if $R$ is a ring of $p$-adic integers, then the Witt decomposition map $\delta $ between the Grothendieck-Witt group of bilinear $KG$-modules and the one of finite bilinear $RG$-modules is surjective. For number fields $K, \delta $ is also surjective, if $G$ is a nilpotent group of odd order, but there are counterexamples for groups of even order.
LA - eng
KW - Grothendick-Witt group; equivariant Witt group
UR - http://eudml.org/doc/248510
ER -

References

top
  1. [ARS 97] M. Auslander, I. Reiten, S.O. Smalø, Representation theory of Artin algebras. Cambridge studies in advanced math., 36Camb. Univers. Press (1997). Zbl0396.16007MR1476671
  2. [CuR 81] C.W. Curtis, I. Reiner, Methods of representation theory, with applications to finite groups and orders. Vol. I. John Wiley & Sons. (1981). Zbl0469.20001MR632548
  3. [Dre 75] A.W.M. Dress, Induction and structure theorems for orthogonal representations of finite groups. Annals of Math.102 (1975), 291-325. Zbl0315.20007MR387392
  4. [MiH 73] J. Milnor, D. Husemoller, Symmetric bilinear forms. Springer Ergebnisse73 (1973). Zbl0292.10016MR506372
  5. [Knu 91] M.-A. Knus, Quadratic and Hermitian Forms over Rings. Springer Grundlehren 294 (1991). Zbl0756.11008MR1096299
  6. [Miy 90] M. Miyamoto, Equivariant Witt Groups of Finite Groups of Odd Order. J. Algebra133 (1990), 197-210. Zbl0707.20004MR1063391
  7. [Mor 88] J.F. Morales, Maximal Hermitian forms over ZG. Comment. Math. Helv.63 (1988), no.2, 209-225. Zbl0654.10023MR948778
  8. [Mor 90] J.F. Morales, Equivariant Witt groups. Canad. Math. Bull.33 (1990), 207-218. Zbl0674.10020MR1060376
  9. [Neb 99] G. Nebe, Orthogonale Darstellungen endlicher Gruppen und Gruppenringe, Habilitationsschrift, RWTH Aachen, Aachener Beiträge zur Mathematik26, VerlagMainzAachen (1999). Zbl1052.20005MR1732361
  10. [Rei 75] I. Reiner, Maximal orders. Academic Press (1975). Zbl0305.16001MR1972204
  11. [Scha 85] W. Scharlau, Quadratic and Hermitian Forms. Springer Grundlehren270 (1985). Zbl0584.10010MR770063
  12. [Ser 77] J.-P. Serre, Linear Representations of Finite Groups. Springer GTM42 (1977). Zbl0355.20006MR450380
  13. [Tho 84] J.G. Thompson, Bilinear Forms in Characteristic p and the Frobenius-Schur Indicator. Springer LNM 1185 (1984), 221-230. 
  14. [Was 82] L.C. Washington, Introduction to cyclotomic fields. Springer GTM 83 (1982). Zbl0484.12001MR718674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.