On the limit cycle of the Liénard equation

Kenzi Odani

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 1, page 25-31
  • ISSN: 0044-8753

Abstract

top
In the paper, we give an existence theorem of periodic solution for Liénard equation x ˙ = y - F ( x ) , y ˙ = - g ( x ) . As a result, we estimate the amplitude ρ ( μ ) (maximal x -value) of the limit cycle of the van der Pol equation x ˙ = y - μ ( x 3 / 3 - x ) , y ˙ = - x from above by ρ ( μ ) < 2 . 3439 for every μ 0 . The result is an improvement of the author’s previous estimation ρ ( μ ) < 2 . 5425 .

How to cite

top

Odani, Kenzi. "On the limit cycle of the Liénard equation." Archivum Mathematicum 036.1 (2000): 25-31. <http://eudml.org/doc/248523>.

@article{Odani2000,
abstract = {In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot\{x\}=y-F(x)$, $\dot\{y\}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot\{x\}=y-\mu (x^3/3-x)$, $\dot\{y\}=-x$ from above by $\rho (\mu )<2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )<2.5425$.},
author = {Odani, Kenzi},
journal = {Archivum Mathematicum},
keywords = {van der Pol equation; limit cycle; amplitude; van der Pol equation; limit cycle; amplitude},
language = {eng},
number = {1},
pages = {25-31},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the limit cycle of the Liénard equation},
url = {http://eudml.org/doc/248523},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Odani, Kenzi
TI - On the limit cycle of the Liénard equation
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 1
SP - 25
EP - 31
AB - In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )<2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )<2.5425$.
LA - eng
KW - van der Pol equation; limit cycle; amplitude; van der Pol equation; limit cycle; amplitude
UR - http://eudml.org/doc/248523
ER -

References

top
  1. Alsholm P., Existence of limit cycles for generalized Liénard equation, J. Math. Anal. Appl. 171 (1992), 242–255. (1992) MR1192504
  2. Cartwright M. L., Van der Pol’s equation for relaxation oscillation, In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18. (1952) MR0052617
  3. Giacomini H., Neukirch S., On the number of limit cycles of Liénard equation, Physical Review E56 (1997), 3809-3813. (1997) MR1476640
  4. van Horssen W. T., A perturbation method based on integrating factors, SIAM J. Appl. Math. 59 (1999), 1427-1443. (1999) Zbl0926.34043MR1692651
  5. Lefschetz S., Differential Equations: Geometric Theory, 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977. (1963) Zbl0107.07101MR0153903
  6. Odani K., The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995), 146–152. (1995) Zbl0816.34023MR1308609
  7. Odani K., Existence of exactly N periodic solutions for Liénard systems, Funkcialaj Ekvacioj 39 (1996), 217–234. (1996) Zbl0864.34032MR1418722
  8. Odani K., On the limit cycle of the van der Pol equation, In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235. (1998) 
  9. Ye Y.-Q., al., Theory of Limit Cycles, Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.) (1986) Zbl0588.34022MR0854278
  10. Zhang Z.-F., al., Qualitative Theory of Differential Equations, Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.) (1992) Zbl0779.34001MR1175631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.