On the limit cycle of the Liénard equation
Archivum Mathematicum (2000)
- Volume: 036, Issue: 1, page 25-31
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topOdani, Kenzi. "On the limit cycle of the Liénard equation." Archivum Mathematicum 036.1 (2000): 25-31. <http://eudml.org/doc/248523>.
@article{Odani2000,
abstract = {In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot\{x\}=y-F(x)$, $\dot\{y\}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot\{x\}=y-\mu (x^3/3-x)$, $\dot\{y\}=-x$ from above by $\rho (\mu )<2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )<2.5425$.},
author = {Odani, Kenzi},
journal = {Archivum Mathematicum},
keywords = {van der Pol equation; limit cycle; amplitude; van der Pol equation; limit cycle; amplitude},
language = {eng},
number = {1},
pages = {25-31},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the limit cycle of the Liénard equation},
url = {http://eudml.org/doc/248523},
volume = {036},
year = {2000},
}
TY - JOUR
AU - Odani, Kenzi
TI - On the limit cycle of the Liénard equation
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 1
SP - 25
EP - 31
AB - In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )<2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )<2.5425$.
LA - eng
KW - van der Pol equation; limit cycle; amplitude; van der Pol equation; limit cycle; amplitude
UR - http://eudml.org/doc/248523
ER -
References
top- Alsholm P., Existence of limit cycles for generalized Liénard equation, J. Math. Anal. Appl. 171 (1992), 242–255. (1992) MR1192504
- Cartwright M. L., Van der Pol’s equation for relaxation oscillation, In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18. (1952) MR0052617
- Giacomini H., Neukirch S., On the number of limit cycles of Liénard equation, Physical Review E56 (1997), 3809-3813. (1997) MR1476640
- van Horssen W. T., A perturbation method based on integrating factors, SIAM J. Appl. Math. 59 (1999), 1427-1443. (1999) Zbl0926.34043MR1692651
- Lefschetz S., Differential Equations: Geometric Theory, 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977. (1963) Zbl0107.07101MR0153903
- Odani K., The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995), 146–152. (1995) Zbl0816.34023MR1308609
- Odani K., Existence of exactly periodic solutions for Liénard systems, Funkcialaj Ekvacioj 39 (1996), 217–234. (1996) Zbl0864.34032MR1418722
- Odani K., On the limit cycle of the van der Pol equation, In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235. (1998)
- Ye Y.-Q., al., Theory of Limit Cycles, Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.) (1986) Zbl0588.34022MR0854278
- Zhang Z.-F., al., Qualitative Theory of Differential Equations, Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.) (1992) Zbl0779.34001MR1175631
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.