The natural affinors on ( J r T * ) *

Włodzimierz M. Mikulski

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 4, page 261-267
  • ISSN: 0044-8753

Abstract

top
For natural numbers r and n 2 a complete classification of natural affinors on the natural bundle ( J r T * ) * dual to r -jet prolongation J r T * of the cotangent bundle over n -manifolds is given.

How to cite

top

Mikulski, Włodzimierz M.. "The natural affinors on $(J^rT^*)^*$." Archivum Mathematicum 036.4 (2000): 261-267. <http://eudml.org/doc/248546>.

@article{Mikulski2000,
abstract = {For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.},
author = {Mikulski, Włodzimierz M.},
journal = {Archivum Mathematicum},
keywords = {bundle functors; natural transformations; natural affinors; bundle functors; natural transformations; natural affinors},
language = {eng},
number = {4},
pages = {261-267},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The natural affinors on $(J^rT^*)^*$},
url = {http://eudml.org/doc/248546},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - The natural affinors on $(J^rT^*)^*$
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 4
SP - 261
EP - 267
AB - For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
LA - eng
KW - bundle functors; natural transformations; natural affinors; bundle functors; natural transformations; natural affinors
UR - http://eudml.org/doc/248546
ER -

References

top
  1. Natural transformations between T T T * M and T T * T M , Czechoslovak Math. J. 43 (118) 1993, 599–613. Zbl0806.53024MR1258423
  2. Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209. MR1189217
  3. Natural affinors on the extended r -th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95–100. MR1246623
  4. Natural operations in differential geometry, Springer-Verlag, Berlin 1993. MR1202431
  5. Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2(1992), 1–16. MR1244453
  6. Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175–180. MR1222284
  7. Natural affinors on r -jet prolongation of the tangent bundle, Arch. Math. (Brno) 34(2)(1998), 321–328. Zbl0915.58006MR1645340
  8. The natural affinors on k T ( r ) , Note di Matematica, to appear. 
  9. On the order of natural operators and liftings, Ann. Polon. Math. 49(1988), 169–178. MR0983220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.