Natural affinors on ( J r , s , q ( . , 1 , 1 ) 0 ) *

Włodzimierz M. Mikulski

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 655-663
  • ISSN: 0010-2628

Abstract

top
Let r , s , q , m , n be such that s r q . Let Y be a fibered manifold with m -dimensional basis and n -dimensional fibers. All natural affinors on ( J r , s , q ( Y , 1 , 1 ) 0 ) * are classified. It is deduced that there is no natural generalized connection on ( J r , s , q ( Y , 1 , 1 ) 0 ) * . Similar problems with ( J r , s ( Y , ) 0 ) * instead of ( J r , s , q ( Y , 1 , 1 ) 0 ) * are solved.

How to cite

top

Mikulski, Włodzimierz M.. "Natural affinors on $(J^{r,s,q}(.,\mathbb {R}^{1,1})_0)^*$." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 655-663. <http://eudml.org/doc/248782>.

@article{Mikulski2001,
abstract = {Let $r,s,q, m,n\in \mathbb \{N\}$ be such that $s\ge r\le q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^\{r,s,q\}(Y,\mathbb \{R\}^\{1,1\})_0)^*$ are classified. It is deduced that there is no natural generalized connection on $(J^\{r,s,q\}(Y,\mathbb \{R\}^\{1,1\})_0)^*$. Similar problems with $(J^\{r,s\}(Y,\mathbb \{R\})_0)^*$ instead of $(J^\{r,s,q\}(Y,\mathbb \{R\}^\{1,1\})_0)^*$ are solved.},
author = {Mikulski, Włodzimierz M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bundle functors; natural transformations; natural affinors; bundle functors; natural transformations; natural affinors},
language = {eng},
number = {4},
pages = {655-663},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Natural affinors on $(J^\{r,s,q\}(.,\mathbb \{R\}^\{1,1\})_0)^*$},
url = {http://eudml.org/doc/248782},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - Natural affinors on $(J^{r,s,q}(.,\mathbb {R}^{1,1})_0)^*$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 655
EP - 663
AB - Let $r,s,q, m,n\in \mathbb {N}$ be such that $s\ge r\le q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\mathbb {R}^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on $(J^{r,s,q}(Y,\mathbb {R}^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\mathbb {R})_0)^*$ instead of $(J^{r,s,q}(Y,\mathbb {R}^{1,1})_0)^*$ are solved.
LA - eng
KW - bundle functors; natural transformations; natural affinors; bundle functors; natural transformations; natural affinors
UR - http://eudml.org/doc/248782
ER -

References

top
  1. Doupovec M., Kolář I., Natural affinors on time-dependent Weil bundles, Arch. Math. Brno 27 (1991), 205-209. (1991) MR1189217
  2. Gancarzewicz J., Kolář I., Natural affinors on the extended r -th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95-100. (1993) MR1246623
  3. Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993. MR1202431
  4. Kolář I., Mikulski W.M., Contact elements on fibered manifolds, to appear in Czech Math. J. MR2018847
  5. Kolář I., Modugno M., Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1-16. (1992) MR1244453
  6. Kolář I., Vosmanská G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pěst. mat. 114 (1989), 181-185. (1989) MR1063764
  7. Kurek J., Natural affinors on higher order cotangent bundles, Arch. Math. Brno 28 (1992), 175-180. (1992) MR1222284
  8. Mikulski W.M., Natural affinors on r -jet prolongation of the tangent bundles, Arch. Math. Brno 34(2) (1998), 321-328. (1998) MR1645340
  9. Mikulski W.M., Natural affinors on ( J r T * ) * , Arch. Math. Brno 36(4) (2000), 261-267. (2000) MR1811170
  10. Mikulski W.M., The natural affinors on ø t i m e s k T ( r ) , Note di Matematica 19(2) (1999), 269-274. (1999) MR1816880
  11. Mikulski W.M., The natural affinors on generalized higher order tangent bundles, to appear. Zbl1048.58004MR1884952
  12. Zajtz A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178. (1988) MR0983220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.