Natural affinors on
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 4, page 655-663
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMikulski, Włodzimierz M.. "Natural affinors on $(J^{r,s,q}(.,\mathbb {R}^{1,1})_0)^*$." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 655-663. <http://eudml.org/doc/248782>.
@article{Mikulski2001,
abstract = {Let $r,s,q, m,n\in \mathbb \{N\}$ be such that $s\ge r\le q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^\{r,s,q\}(Y,\mathbb \{R\}^\{1,1\})_0)^*$ are classified. It is deduced that there is no natural generalized connection on $(J^\{r,s,q\}(Y,\mathbb \{R\}^\{1,1\})_0)^*$. Similar problems with $(J^\{r,s\}(Y,\mathbb \{R\})_0)^*$ instead of $(J^\{r,s,q\}(Y,\mathbb \{R\}^\{1,1\})_0)^*$ are solved.},
author = {Mikulski, Włodzimierz M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bundle functors; natural transformations; natural affinors; bundle functors; natural transformations; natural affinors},
language = {eng},
number = {4},
pages = {655-663},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Natural affinors on $(J^\{r,s,q\}(.,\mathbb \{R\}^\{1,1\})_0)^*$},
url = {http://eudml.org/doc/248782},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - Natural affinors on $(J^{r,s,q}(.,\mathbb {R}^{1,1})_0)^*$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 655
EP - 663
AB - Let $r,s,q, m,n\in \mathbb {N}$ be such that $s\ge r\le q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\mathbb {R}^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on $(J^{r,s,q}(Y,\mathbb {R}^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\mathbb {R})_0)^*$ instead of $(J^{r,s,q}(Y,\mathbb {R}^{1,1})_0)^*$ are solved.
LA - eng
KW - bundle functors; natural transformations; natural affinors; bundle functors; natural transformations; natural affinors
UR - http://eudml.org/doc/248782
ER -
References
top- Doupovec M., Kolář I., Natural affinors on time-dependent Weil bundles, Arch. Math. Brno 27 (1991), 205-209. (1991) MR1189217
- Gancarzewicz J., Kolář I., Natural affinors on the extended -th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95-100. (1993) MR1246623
- Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993. MR1202431
- Kolář I., Mikulski W.M., Contact elements on fibered manifolds, to appear in Czech Math. J. MR2018847
- Kolář I., Modugno M., Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1-16. (1992) MR1244453
- Kolář I., Vosmanská G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pěst. mat. 114 (1989), 181-185. (1989) MR1063764
- Kurek J., Natural affinors on higher order cotangent bundles, Arch. Math. Brno 28 (1992), 175-180. (1992) MR1222284
- Mikulski W.M., Natural affinors on -jet prolongation of the tangent bundles, Arch. Math. Brno 34(2) (1998), 321-328. (1998) MR1645340
- Mikulski W.M., Natural affinors on , Arch. Math. Brno 36(4) (2000), 261-267. (2000) MR1811170
- Mikulski W.M., The natural affinors on , Note di Matematica 19(2) (1999), 269-274. (1999) MR1816880
- Mikulski W.M., The natural affinors on generalized higher order tangent bundles, to appear. Zbl1048.58004MR1884952
- Zajtz A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178. (1988) MR0983220
Citations in EuDML Documents
top- Jan Kurek, Włodzimierz Mikulski, The natural functions on the cotangent bundle of higher order vector tangent bundles over fibered manifolds
- Jan Kurek, Włodzimierz M. Mikulski, The natural affinors on some fiber product preserving gauge bundle functors of vector bundles
- Paweł Michalec, The canonical tensor fields of type on
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.