The natural operators lifting vector fields to ( J r T * ) *

Włodzimierz M. Mikulski

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 4, page 255-260
  • ISSN: 0044-8753

Abstract

top
For integers r 2 and n 2 a complete classification of all natural operators A : T | M n T ( J r T * ) * lifting vector fields to vector fields on the natural bundle ( J r T * ) * dual to r -jet prolongation J r T * of the cotangent bundle over n -manifolds is given.

How to cite

top

Mikulski, Włodzimierz M.. "The natural operators lifting vector fields to $(J^rT^*)^*$." Archivum Mathematicum 036.4 (2000): 255-260. <http://eudml.org/doc/248551>.

@article{Mikulski2000,
abstract = {For integers $r\ge 2$ and $n\ge 2$ a complete classification of all natural operators $A:T_\{\vert M_n\}\rightsquigarrow T(J^rT^*)^*$ lifting vector fields to vector fields on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.},
author = {Mikulski, Włodzimierz M.},
journal = {Archivum Mathematicum},
keywords = {bundle functors; natural transformations; natural operators; bundle functors; natural transformations; natural operators},
language = {eng},
number = {4},
pages = {255-260},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The natural operators lifting vector fields to $(J^rT^*)^*$},
url = {http://eudml.org/doc/248551},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - The natural operators lifting vector fields to $(J^rT^*)^*$
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 4
SP - 255
EP - 260
AB - For integers $r\ge 2$ and $n\ge 2$ a complete classification of all natural operators $A:T_{\vert M_n}\rightsquigarrow T(J^rT^*)^*$ lifting vector fields to vector fields on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
LA - eng
KW - bundle functors; natural transformations; natural operators; bundle functors; natural transformations; natural operators
UR - http://eudml.org/doc/248551
ER -

References

top
  1. Natural operations transforming vector fields to the second order tangent bundle, Čas. pěst. mat. 115(1990), 64–72. MR1044015
  2. Lifting of functions and vector fields to natural bundles, Dissert. Math. CCXII, Warszawa, 1983. MR0697471
  3. On natural operators on vector fields, Ann. Global Analysis and Geometry, 6(2) (1988), 109–117. MR0982760
  4. On the natural operators transforming vector fields to the r -th tensor power,, Suppl. Rendiconti Circolo Mat. Palermo, 32 (II) (1993), 15–20. MR1283617
  5. Natural operations in differential geometry, Springer-Verlag, Berlin 1993. MR1202431
  6. Natural liftings of vector fields to tangent bundles of bundles of 1-forms, Math. Boch. 116 (1991), 319–326. Zbl0743.53008MR1126453
  7. Some natural operations on vector fields, Rendiconti Math. Roma 12(VII) (1992), 783–803. Zbl0766.58005MR1205977
  8. Some natural constructions on vector fields and higher order cotangent bundles, Mh. Math. 117 (1994), 107–119. Zbl0796.58002MR1266777
  9. Natural operators on vector fields on the cotangent bundles of the bundles of (k,r)-velocities, Rend. Circ. Mat. Palermo 5431(II) (1998), 113–124 239–249. Zbl0929.58001MR1662732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.