Natural -functions on the cotangent bundle of a Weil bundle
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 4, page 869-882
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTomáš, Jiří M.. "Natural $T$-functions on the cotangent bundle of a Weil bundle." Czechoslovak Mathematical Journal 54.4 (2004): 869-882. <http://eudml.org/doc/30906>.
@article{Tomáš2004,
abstract = {A natural $T$-function on a natural bundle $F$ is a natural operator transforming vector fields on a manifold $M$ into functions on $FM$. For any Weil algebra $A$ satisfying $\dim M \ge \{\mathrm \{w\}idth\}(A)+1$ we determine all natural $T$-functions on $T^*T^AM$, the cotangent bundle to a Weil bundle $T^AM$.},
author = {Tomáš, Jiří M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {natural bundle; natural operator; Weil bundle; natural bundle; natural operator; Weil bundle},
language = {eng},
number = {4},
pages = {869-882},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Natural $T$-functions on the cotangent bundle of a Weil bundle},
url = {http://eudml.org/doc/30906},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Tomáš, Jiří M.
TI - Natural $T$-functions on the cotangent bundle of a Weil bundle
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 4
SP - 869
EP - 882
AB - A natural $T$-function on a natural bundle $F$ is a natural operator transforming vector fields on a manifold $M$ into functions on $FM$. For any Weil algebra $A$ satisfying $\dim M \ge {\mathrm {w}idth}(A)+1$ we determine all natural $T$-functions on $T^*T^AM$, the cotangent bundle to a Weil bundle $T^AM$.
LA - eng
KW - natural bundle; natural operator; Weil bundle; natural bundle; natural operator; Weil bundle
UR - http://eudml.org/doc/30906
ER -
References
top- Jet manifold associated to a Weil bundle, Arch. Math. 36 (2000), 195–199. (2000) Zbl1049.58007MR1785036
- Covariant approach to natural transformations of Weil functors, Comm. Math. Univ. Carolin. 27 (1986), 723–729. (1986) MR0874666
- On cotagent bundles of some natural bundles, Rend. Circ. Mat. Palermo. Serie II 37 (1994), 115–120. (1994) MR1344006
- 10.1007/BF00133034, Ann. Global Anal. Geometry 6 (1988), 109–117. (1988) MR0982760DOI10.1007/BF00133034
- Natural Operations in Differential Geometry, Springer-Verlag, , 1993. (1993) MR1202431
- Natural transformations of second tangent and cotangent bundles, Czechoslovak Math. J. 38(113) (1988), 274–279. (1988) MR0946296
- The natural operators lifting vector fields to generalized higher order tangent bundles, Arch. Math. 36 (2000), 207–212. (2000) Zbl1049.58010MR1785038
- The jet prolongations of fibered fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2000), 441–458. (2000) MR1874443
- The natural operators lifting vector fields to , Arch. Math. 36 (2000), 255–260. (2000) Zbl1049.58011MR1811169
- Some results on second tangent and cotangent spaces, Quaderni dell’Università di Lecce (1978), . (1978)
- Weil bundles and jet spaces, Arch. Math. (to appear). (to appear) MR1792967
- Natural operators on vector fields on the cotangent bundles of the bundles of -velocities, Rend. Circ. Mat. Palermo II-54 (1998), 113–124. (1998) Zbl0929.58001MR1662732
- Natural -functions on the cotangent bundles bundles of some Weil bundles, Differential Geometry and Applications. Proc. of the Satellite Conf. of ICM in Berlin, Brno, August 10–14, 1998, 1998, pp. 293–302. (1998) MR1708917
- On quasijet bundles, Rend. Circ. Mat. Palermo. Serie II 63 (2000), 187–196. (2000) MR1764094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.