# On Lie ideals and Jordan left derivations of prime rings

Mohammad Ashraf; Nadeem-ur-Rehman

Archivum Mathematicum (2000)

- Volume: 036, Issue: 3, page 201-206
- ISSN: 0044-8753

## Access Full Article

top## Abstract

top## How to cite

topAshraf, Mohammad, and Nadeem-ur-Rehman. "On Lie ideals and Jordan left derivations of prime rings." Archivum Mathematicum 036.3 (2000): 201-206. <http://eudml.org/doc/248559>.

@article{Ashraf2000,

abstract = {Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^\{2\} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^\{2\})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.},

author = {Ashraf, Mohammad, Nadeem-ur-Rehman},

journal = {Archivum Mathematicum},

keywords = {Lie ideals; prime rings; Jordan left derivations; left derivations; torsion free rings; Lie ideals; prime rings; Jordan left derivations; additive mappings; torsion free rings},

language = {eng},

number = {3},

pages = {201-206},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {On Lie ideals and Jordan left derivations of prime rings},

url = {http://eudml.org/doc/248559},

volume = {036},

year = {2000},

}

TY - JOUR

AU - Ashraf, Mohammad

AU - Nadeem-ur-Rehman

TI - On Lie ideals and Jordan left derivations of prime rings

JO - Archivum Mathematicum

PY - 2000

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 036

IS - 3

SP - 201

EP - 206

AB - Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.

LA - eng

KW - Lie ideals; prime rings; Jordan left derivations; left derivations; torsion free rings; Lie ideals; prime rings; Jordan left derivations; additive mappings; torsion free rings

UR - http://eudml.org/doc/248559

ER -

## References

top- Awtar R., Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math. Soc. 90 (1984), 9–14. (1984) Zbl0528.16020MR0722405
- Bergen J., Herstein I. N., Ker J. W., Lie ideals and derivations of prime rings , J. Algebra 71 (1981), 259–267. (1981) MR0627439
- Bresar M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006. (1988) Zbl0691.16039MR0929422
- Bresar M., Vukman J., Jordan derivations of prime rings, Bull. Aust. Math. Soc. 37 (1988), 321–322. (1988) MR0943433
- Bresar M., Vukman J., On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7–16. (1990) Zbl0703.16020MR1028284
- Deng Q., On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145–147. (1992) Zbl0813.16021MR1272614
- Herstein I. N., Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. (1957) MR0095864
- Herstein I. N., Topics in ring theory, Univ. of Chcago Press, Chicago 1969. (1969) Zbl0232.16001MR0271135
- Kill-Wong Jun, Byung-Do Kim, A note on Jordan left derivations, Bull. Korean Math. Soc. 33 (1996) No. 2, 221–228. (1996) MR1405475
- Posner E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. (1957) MR0095863
- Vukman J., Jordan left derivations on semiprime rings, Math. J. Okayama Univ. (to appear). Zbl0937.16044MR1680747

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.