Property of the order differential equation
Archivum Mathematicum (2000)
- Volume: 036, Issue: 5, page 487-498
- ISSN: 0044-8753
Access Full Article
topHow to cite
topKováčová, Monika. "Property $A$ of the $(n+1)^{th}$ order differential equation $\left[\frac{1}{r_1(t)}\left(x^{(n)}(t)+p(t)x(t)\right)\right]^{\prime } = f(t,x(t),\cdots ,x^{(n)}(t))$." Archivum Mathematicum 036.5 (2000): 487-498. <http://eudml.org/doc/248562>.
@article{Kováčová2000,
author = {Kováčová, Monika},
journal = {Archivum Mathematicum},
keywords = {property ; oscillatory solutions},
language = {eng},
number = {5},
pages = {487-498},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Property $A$ of the $(n+1)^\{th\}$ order differential equation $\left[\frac\{1\}\{r_1(t)\}\left(x^\{(n)\}(t)+p(t)x(t)\right)\right]^\{\prime \} = f(t,x(t),\cdots ,x^\{(n)\}(t))$},
url = {http://eudml.org/doc/248562},
volume = {036},
year = {2000},
}
TY - JOUR
AU - Kováčová, Monika
TI - Property $A$ of the $(n+1)^{th}$ order differential equation $\left[\frac{1}{r_1(t)}\left(x^{(n)}(t)+p(t)x(t)\right)\right]^{\prime } = f(t,x(t),\cdots ,x^{(n)}(t))$
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 5
SP - 487
EP - 498
LA - eng
KW - property ; oscillatory solutions
UR - http://eudml.org/doc/248562
ER -
References
top- 1. Cecchi M., Došlá Z., Marini M., Comparison theorems for third order differential equations, Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA,1995). (1995) MR1419517
- 2. Greguš M., Graef J. R., On a certain nonautonomous nonlinear third order differential equation, Applicable Analysis, 1995, 58, no. 1-2, 175-185. (1995) Zbl0880.34035MR1384596
- 3. Greguš M., Graef J. R., Gera M., Oscillating nonlinear third order differential equations, Nonlinear Anal. Nonlinear Analysis. Theory, Methods & Applications., 1997, 28, No. 10, 1611-1622. (1997) Zbl0871.34022MR1430504
- 4. Greguš M., Gera M., Graef J. R., On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations, Nonlinear Analysis. Theory, Methods & Applications. 1998, 32, No. 3, 417–425. (1998) Zbl0945.34021MR1610594
- 5. Kiguradze I. T., Oscillation tests for a class of ordinary differential equations, Diferen. Uravnenja, 28 No. 2, 1992, 180-190. (1992) Zbl0788.34027MR1184921
- 6. Kováčová M., Comparison Theorems for the n-th Order Differential Equations, Nonlinear Analysis Forum, 2000, vol. 5, 173–190. (190.) MR1798693
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.