Polynomial time bounded truth-table reducibilities to padded sets
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 773-792
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGlasnák, Vladimír. "Polynomial time bounded truth-table reducibilities to padded sets." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 773-792. <http://eudml.org/doc/248586>.
@article{Glasnák2000,
abstract = {We study bounded truth-table reducibilities to sets of small information content called padded (a set is in the class $f\text\{\it -PAD\}$ of all $f$-padded sets, if it is a subset of $\lbrace x10^\{f(|x|)-|x|-1\};\,x\in \lbrace 0,1\rbrace ^*\rbrace $). This is a continuation of the research of reducibilities to sparse and tally sets that were studied in many previous papers (for a good survey see [HOW1]). We show necessary and sufficient conditions to collapse and separate classes of bounded truth-table reducibilities to padded sets. We prove that depending on two properties of a function $f$ measuring “holes” in its image, one of the following three possibilities happen: \[ R\_\{\text\{\rm m\}\}(f\text\{\it -PAD\})\subsetneq R\_\{1\text\{\rm -tt\}\}(f\text\{\it -PAD\}) \subsetneq \dots \subsetneq R\_\{\text\{\rm btt\}\}(f\text\{\it -PAD\}), \text\{ or\} \ R\_\{\text\{\rm m\}\}(f\text\{\it -PAD\}) = R\_\{1\text\{\rm -tt\}\}(f\text\{\it -PAD\})\subsetneq \dots \subsetneq R\_\{\text\{\rm btt\}\}(f\text\{\it -PAD\}), \text\{ or\} \ R\_\{\text\{\rm m\}\}(f\text\{\it -PAD\}) = R\_\{\text\{\rm btt\}\}(f\text\{\it -PAD\}). \]},
author = {Glasnák, Vladimír},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {computational complexity; sparse set; padded set; reducibility; computational complexity; sparse set; padded set; reducibility},
language = {eng},
number = {4},
pages = {773-792},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Polynomial time bounded truth-table reducibilities to padded sets},
url = {http://eudml.org/doc/248586},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Glasnák, Vladimír
TI - Polynomial time bounded truth-table reducibilities to padded sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 773
EP - 792
AB - We study bounded truth-table reducibilities to sets of small information content called padded (a set is in the class $f\text{\it -PAD}$ of all $f$-padded sets, if it is a subset of $\lbrace x10^{f(|x|)-|x|-1};\,x\in \lbrace 0,1\rbrace ^*\rbrace $). This is a continuation of the research of reducibilities to sparse and tally sets that were studied in many previous papers (for a good survey see [HOW1]). We show necessary and sufficient conditions to collapse and separate classes of bounded truth-table reducibilities to padded sets. We prove that depending on two properties of a function $f$ measuring “holes” in its image, one of the following three possibilities happen: \[ R_{\text{\rm m}}(f\text{\it -PAD})\subsetneq R_{1\text{\rm -tt}}(f\text{\it -PAD}) \subsetneq \dots \subsetneq R_{\text{\rm btt}}(f\text{\it -PAD}), \text{ or} \ R_{\text{\rm m}}(f\text{\it -PAD}) = R_{1\text{\rm -tt}}(f\text{\it -PAD})\subsetneq \dots \subsetneq R_{\text{\rm btt}}(f\text{\it -PAD}), \text{ or} \ R_{\text{\rm m}}(f\text{\it -PAD}) = R_{\text{\rm btt}}(f\text{\it -PAD}). \]
LA - eng
KW - computational complexity; sparse set; padded set; reducibility; computational complexity; sparse set; padded set; reducibility
UR - http://eudml.org/doc/248586
ER -
References
top- Allender E., Limitations of the upward separation technique, Math. Systems Theory 24 (1991), 53-67. (1991) Zbl0708.68019MR1076125
- Arvind V., Han Y., Hemachandra L., Köbler J., Lozano A., Mundhenk M., Ogiwara M., Schöning U., Silvestri R., Thierauf T., Reductions to sets of low information content, in Proceedings of the 19th International Colloquium on Automata, Languages and Programming, Springer-Verlag Lecture Notes in Computer Science, vol. 623, 1992, pp.162-173.
- Balcázar J. L., Díaz J. and Gabarró J., Structural complexity I, volume 11 of EATCS Monographs on Theoretical Computer Science, Springer Verlag, Berlin, 1988. MR1047862
- Buhrman H., Resource Bounded Reductions, PhD Thesis, Universiteit van Amsterdam, Amsterdam, 1993. MR1255342
- Berman L., Hartmanis J., On isomorphism and density of NP and other complete sets, SIAM J. Comput. 6 (1977), 305-327. (1977) MR0455536
- Buhrman H., Homer S., Torenvliet L., Completeness for nondeterministic complexity classes, Math. Systems Theory 24 (1991), 179-200. (1991) Zbl0745.68046MR1113612
- Book R., Ko K., On sets truth-table reducible to sparse sets, SIAM J. Comput. 17 (1988), 903-919. (1988) Zbl0665.68040MR0961047
- Buhrman H., Spaan E., Torenvliet L., Bounded reductions, in K. Ambos-Spies, S. Homer and U. Schöning, editors, Complexity Theory, Cambridge University Press, 1993, pp.83-99. Zbl0788.68049MR1255342
- Cook S.A., The complexity of theorem proving procedures, Proc. 3rd Annual Symposium on Theory of Computing, 1971, pp.151-158. Zbl0363.68125
- Glasnák V., Sparse sets and collapse of complexity classes, submitted for publication.
- Hartmanis J., On sparse sets in NPP, Inform. Process. Lett. 16 (1983), 55-60. (1983) Zbl0501.68014MR0696842
- Hartmanis J., Immerman N., Sewelson V., Sparse sets in NPP: EXPTIME versus NEXPTIME, Inform. and Control 65 (1985), 158-181. (1985) Zbl0586.68042MR0818849
- Hemachandra L., Ogiwara M., Watanabe O., How hard are sparse sets?, in Proc. Structure in Complexity Theory seventh annual conference, pp.222-238; IEEE Computer Society Press, 1992. MR1249979
- Karp R.M., Lipton R.J., Some connections between uniform and nonuniform complexity classes, Proc. 12th ACM Symposium on Theory of Computing, 1980, pp.302-309.
- Karp R. M., Reducibility among combinatorial problems, in Miller, Thatcher (ed.), Complexity of Computer Computations, Plenum Press, New York, 1972, pp.302-309. Zbl0366.68041MR0378476
- Ko K., Distinguishing conjunctive and disjunctive reducibilities by sparse sets, Inform. and Comput. 81 (1989), 62-87. (1989) Zbl0681.68066MR0992304
- Köbler J., Unterschung verschiedener polynomieller Reduktionsklassen von NP, Diplom. thesis, Institut für Informatik, Univ. Stuttgart, 1985.
- Ladner R., Lynch N., Selman A., A comparison of polynomial-time reducibilities, Theoret. Comput. Sci. 1 (1973), 103-123. (1973) MR0395319
- Li M., Vitányi P., An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, New York, 1993. MR1238938
- Ogiwara M., Watanabe O., On polynomial-time bounded truth-table reducibility of NP sets to sparse sets, SIAM J. Comput. 20 3 (1991), 471-483. (1991) Zbl0741.68049MR1094526
- Mahaney S., Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, J. Comput. System Sci. 25 (1982), 130-143. (1982) Zbl0493.68043MR0680515
- Ranjan D., Rohatgi P., On randomized reductions to sparse sets, in Proceedings of the 7th Structure in Complexity Theory Conference, IEEE Computer Society Press, 1992, pp.239-242. MR1249980
- Saluja S., Relativized limitations of left set technique and closure classes of sparse sets, Proc. of the 8th IEEE Conf. Structure in Complexity Theory, 1993, pp.215-222.
- Schöning U., On random reductions from sparse to tally sets, Inform. Process. Lett. 46 (1993), 239-241. (1993)
- Watanabe O., A comparison of polynomial time completeness notions, Theoret. Comput. Sci. 54 (1987), 249-265. (1987) Zbl0635.68035MR0919594
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.