Hu's Primal Algebra Theorem revisited
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 4, page 855-859
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Balbes R., Dwinger Ph., Distributive Lattices, University of Missouri Press, Missouri, 1974. Zbl0321.06012MR0373985
- Borceux F., Handbook of Categorical Algebra Vol. 2, Cambridge University Press, Cambridge, 1994.
- Davey B.A., Werner H., Dualities and equivalences for varieties of algebras, in A.P. Huhn and E.T. Schmidt, editors, `Contributions to Lattice Theory' (Proc. Conf. Szeged 1980), vol. 33 of Coll. Math. Soc. János Bolyai, North-Holland, 1983, pp.101-275. Zbl0532.08003MR0724265
- Hu T.K., Stone duality for Primal Algebra Theory, Math. Z. 110 (1969), 180-198. (1969) Zbl0175.28903MR0244130
- Hu T.K., On the topological duality for Primal Algebra Theory, Algebra Universalis 1 (1971), 152-154. (1971) Zbl0236.08005MR0294218
- Lawvere F.W., Functorial semantics of algebraic theories, PhD thesis, Columbia University, 1963. Zbl1062.18004MR0158921
- McKenzie R., An algebraic version of categorical equivalence for varieties and more general algebraic theories, in A. Ursini and P. Agliano, editors, `Logic and Algebra', vol. 180 of Lecture Notes in Pure and Appl. Mathematics, Marcel Dekker, 1996, pp.211-243. MR1404941
- Porst H.-E., Equivalence for varieties in general and for Bool in particular, to appear in Algebra Universalis. MR1773936