Global left loop structures on spheres

Michael K. Kinyon

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 2, page 325-346
  • ISSN: 0010-2628

Abstract

top
On the unit sphere 𝕊 in a real Hilbert space 𝐇 , we derive a binary operation such that ( 𝕊 , ) is a power-associative Kikkawa left loop with two-sided identity 𝐞 0 , i.e., it has the left inverse, automorphic inverse, and A l properties. The operation is compatible with the symmetric space structure of 𝕊 . ( 𝕊 , ) is not a loop, and the right translations which fail to be injective are easily characterized. ( 𝕊 , ) satisfies the left power alternative and left Bol identities “almost everywhere” but not everywhere. Left translations are everywhere analytic; right translations are analytic except at - 𝐞 0 where they have a nonremovable discontinuity. The orthogonal group O ( 𝐇 ) is a semidirect product of ( 𝕊 , ) with its automorphism group. The left loop structure of ( 𝕊 , ) gives some insight into spherical geometry.

How to cite

top

Kinyon, Michael K.. "Global left loop structures on spheres." Commentationes Mathematicae Universitatis Carolinae 41.2 (2000): 325-346. <http://eudml.org/doc/248593>.

@article{Kinyon2000,
abstract = {On the unit sphere $\mathbb \{S\}$ in a real Hilbert space $\mathbf \{H\}$, we derive a binary operation $\odot $ such that $(\mathbb \{S\},\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\mathbf \{e\}_\{0\}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\mathbb \{S\}$. $(\mathbb \{S\},\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\mathbb \{S\},\odot )$ satisfies the left power alternative and left Bol identities “almost everywhere” but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\mathbf \{e\}_\{0\}$ where they have a nonremovable discontinuity. The orthogonal group $O(\mathbf \{H\})$ is a semidirect product of $(\mathbb \{S\},\odot )$ with its automorphism group. The left loop structure of $(\mathbb \{S\},\odot )$ gives some insight into spherical geometry.},
author = {Kinyon, Michael K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; quasigroup; sphere; Hilbert space; spherical geometry; quasigroups; spheres; Hilbert spaces; spherical geometry; Bol loops; Bruck loops; Kikkawa left loops; reflections},
language = {eng},
number = {2},
pages = {325-346},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Global left loop structures on spheres},
url = {http://eudml.org/doc/248593},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Kinyon, Michael K.
TI - Global left loop structures on spheres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 2
SP - 325
EP - 346
AB - On the unit sphere $\mathbb {S}$ in a real Hilbert space $\mathbf {H}$, we derive a binary operation $\odot $ such that $(\mathbb {S},\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\mathbf {e}_{0}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\mathbb {S}$. $(\mathbb {S},\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\mathbb {S},\odot )$ satisfies the left power alternative and left Bol identities “almost everywhere” but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\mathbf {e}_{0}$ where they have a nonremovable discontinuity. The orthogonal group $O(\mathbf {H})$ is a semidirect product of $(\mathbb {S},\odot )$ with its automorphism group. The left loop structure of $(\mathbb {S},\odot )$ gives some insight into spherical geometry.
LA - eng
KW - loop; quasigroup; sphere; Hilbert space; spherical geometry; quasigroups; spheres; Hilbert spaces; spherical geometry; Bol loops; Bruck loops; Kikkawa left loops; reflections
UR - http://eudml.org/doc/248593
ER -

References

top
  1. Bruck R., A Survey of Binary Systems, (3rd printing, corrected), Springer-Verlag, Berlin, 1971. Zbl0141.01401MR0093552
  2. Chein O., Pflugfelder H.O., Smith J.D.H. (eds.), Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990. Zbl0719.20036MR1125806
  3. Gabrieli E., Karzel H., Reflection geometries over loops, Results Math. 32 (1997), 61-65. (1997) Zbl0922.51007MR1464673
  4. Gabrieli E., Karzel H., Point-reflection geometries, geometric K-loops and unitary geometries, Results Math. 32 (1997), 66-72. (1997) Zbl0922.51006MR1464674
  5. Gabrieli E., Karzel H., The reflection structures of generalized co-Minkowski spaces leading to K-loops, Results Math. 32 (1997), 73-79. (1997) Zbl0923.51014MR1464675
  6. Glauberman G., On loops of odd order, J. Algebra 1 (1964), 374-396. (1964) Zbl0123.01502MR0175991
  7. Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. Zbl0993.53002MR0514561
  8. Karzel H., Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2 -Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. (1968) Zbl0162.24101MR0240715
  9. Kiechle H., Theory of K -loops, Habilitationsschrift, Universität Hamburg, Hamburg, Germany, 1998. Zbl0997.20059
  10. Kikkawa M., On some quasigroups of algebraic models of symmetric spaces, Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.) 6 (1973), 9-13. (1973) Zbl0264.53028MR0327962
  11. Kikkawa M., The geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), 141-179. (1975) MR0383301
  12. Kinyon M.K., Jones O., Loops and semidirect products, to appear in Comm. Algebra. Zbl0974.20049MR1772003
  13. Klingenberg W.P.A., Riemannian Geometry, 2nd ed., Studies in Mathematics I, de Gruyter, New York, 1995. Zbl1073.53006MR1330918
  14. Kepka T., A construction of Bruck loops, Comment. Math. Univ. Carolinae 25 (1984), 591-595. (1984) Zbl0563.20053MR0782010
  15. Kreuzer A., Inner mappings of Bol loops, Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. (1998) MR1474864
  16. Loos O., Symmetric Spaces, vol. 1, Benjamin, New York, 1969. Zbl0228.53034
  17. Miheev P.O., Sabinin L.V., Quasigroups and differential geometry, Chapter XII in 2, pp.357-430. Zbl0721.53018MR1125818
  18. Nesterov A.I., Sabinin L.V., Smooth loops, generalized coherent states and geometric phases, Int. J. Theor. Phys. 36 (1997), 1981-1989. (1997) Zbl0883.22020MR1476347
  19. Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, Vol. 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
  20. Robinson D.A., Bol loops, Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin, 1964. Zbl0803.20053
  21. Robinson D.A., A loop-theoretic study of right-sided quasigroups, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7-16. (1979) Zbl0414.20058MR0552166
  22. Sabinin L.V., On the equivalence of categories of loops and homogeneous spaces, Soviet Math. Dokl. 13 (1972), 970-974. (1972) Zbl0291.18006
  23. Sabinin L.V., Methods of nonassociative algebra in differential geometry (Russian), Supplement to the Russian transl. of S. Kobayashi, K. Nomizu, ``Foundations of Differential Geometry'', vol. 1, Nauka, Moscow, 1981, pp. 293-339. MR0628734
  24. Sabinin L.V., Smooth Quasigroups and Loops, Kluwer Academic Press, Dordrecht, 1999. Zbl1038.20051MR1727714
  25. Sabinin L.V., Sabinina L.L., Sbitneva L., On the notion of gyrogroup, Aequationes Math. 56 (1998), 11-17. (1998) Zbl0923.20051MR1628291
  26. Smith J.D.H., A left loop on the 15 -sphere, J. Algebra 176 (1995), 128-138. (1995) Zbl0841.17004MR1345298
  27. Ungar A.A., The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math. 16 (1989), 168-179. (1989) Zbl0693.20067MR1020224
  28. Ungar A.A., Weakly associative groups, Results Math. 17 (1990), 149-168. (1990) Zbl0699.20055MR1039282
  29. Ungar A.A., Thomas precession and its associated grouplike structure, Amer. J. Phys. 59 (1991), 824-834. (1991) MR1126776
  30. Ungar A.A., The holomorphic automorphism group of the complex disk, Aequationes Math. 47 (1994), 240-254. (1994) Zbl0799.20032MR1268034
  31. Ungar A.A., Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys. 27 (1997), 881-951. (1997) MR1477047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.