Global left loop structures on spheres
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 2, page 325-346
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKinyon, Michael K.. "Global left loop structures on spheres." Commentationes Mathematicae Universitatis Carolinae 41.2 (2000): 325-346. <http://eudml.org/doc/248593>.
@article{Kinyon2000,
abstract = {On the unit sphere $\mathbb \{S\}$ in a real Hilbert space $\mathbf \{H\}$, we derive a binary operation $\odot $ such that $(\mathbb \{S\},\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\mathbf \{e\}_\{0\}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\mathbb \{S\}$. $(\mathbb \{S\},\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\mathbb \{S\},\odot )$ satisfies the left power alternative and left Bol identities “almost everywhere” but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\mathbf \{e\}_\{0\}$ where they have a nonremovable discontinuity. The orthogonal group $O(\mathbf \{H\})$ is a semidirect product of $(\mathbb \{S\},\odot )$ with its automorphism group. The left loop structure of $(\mathbb \{S\},\odot )$ gives some insight into spherical geometry.},
author = {Kinyon, Michael K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; quasigroup; sphere; Hilbert space; spherical geometry; quasigroups; spheres; Hilbert spaces; spherical geometry; Bol loops; Bruck loops; Kikkawa left loops; reflections},
language = {eng},
number = {2},
pages = {325-346},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Global left loop structures on spheres},
url = {http://eudml.org/doc/248593},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Kinyon, Michael K.
TI - Global left loop structures on spheres
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 2
SP - 325
EP - 346
AB - On the unit sphere $\mathbb {S}$ in a real Hilbert space $\mathbf {H}$, we derive a binary operation $\odot $ such that $(\mathbb {S},\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\mathbf {e}_{0}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\mathbb {S}$. $(\mathbb {S},\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\mathbb {S},\odot )$ satisfies the left power alternative and left Bol identities “almost everywhere” but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\mathbf {e}_{0}$ where they have a nonremovable discontinuity. The orthogonal group $O(\mathbf {H})$ is a semidirect product of $(\mathbb {S},\odot )$ with its automorphism group. The left loop structure of $(\mathbb {S},\odot )$ gives some insight into spherical geometry.
LA - eng
KW - loop; quasigroup; sphere; Hilbert space; spherical geometry; quasigroups; spheres; Hilbert spaces; spherical geometry; Bol loops; Bruck loops; Kikkawa left loops; reflections
UR - http://eudml.org/doc/248593
ER -
References
top- Bruck R., A Survey of Binary Systems, (3rd printing, corrected), Springer-Verlag, Berlin, 1971. Zbl0141.01401MR0093552
- Chein O., Pflugfelder H.O., Smith J.D.H. (eds.), Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990. Zbl0719.20036MR1125806
- Gabrieli E., Karzel H., Reflection geometries over loops, Results Math. 32 (1997), 61-65. (1997) Zbl0922.51007MR1464673
- Gabrieli E., Karzel H., Point-reflection geometries, geometric K-loops and unitary geometries, Results Math. 32 (1997), 66-72. (1997) Zbl0922.51006MR1464674
- Gabrieli E., Karzel H., The reflection structures of generalized co-Minkowski spaces leading to K-loops, Results Math. 32 (1997), 73-79. (1997) Zbl0923.51014MR1464675
- Glauberman G., On loops of odd order, J. Algebra 1 (1964), 374-396. (1964) Zbl0123.01502MR0175991
- Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. Zbl0993.53002MR0514561
- Karzel H., Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und -Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. (1968) Zbl0162.24101MR0240715
- Kiechle H., Theory of -loops, Habilitationsschrift, Universität Hamburg, Hamburg, Germany, 1998. Zbl0997.20059
- Kikkawa M., On some quasigroups of algebraic models of symmetric spaces, Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.) 6 (1973), 9-13. (1973) Zbl0264.53028MR0327962
- Kikkawa M., The geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), 141-179. (1975) MR0383301
- Kinyon M.K., Jones O., Loops and semidirect products, to appear in Comm. Algebra. Zbl0974.20049MR1772003
- Klingenberg W.P.A., Riemannian Geometry, 2nd ed., Studies in Mathematics I, de Gruyter, New York, 1995. Zbl1073.53006MR1330918
- Kepka T., A construction of Bruck loops, Comment. Math. Univ. Carolinae 25 (1984), 591-595. (1984) Zbl0563.20053MR0782010
- Kreuzer A., Inner mappings of Bol loops, Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. (1998) MR1474864
- Loos O., Symmetric Spaces, vol. 1, Benjamin, New York, 1969. Zbl0228.53034
- Miheev P.O., Sabinin L.V., Quasigroups and differential geometry, Chapter XII in 2, pp.357-430. Zbl0721.53018MR1125818
- Nesterov A.I., Sabinin L.V., Smooth loops, generalized coherent states and geometric phases, Int. J. Theor. Phys. 36 (1997), 1981-1989. (1997) Zbl0883.22020MR1476347
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, Vol. 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
- Robinson D.A., Bol loops, Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin, 1964. Zbl0803.20053
- Robinson D.A., A loop-theoretic study of right-sided quasigroups, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7-16. (1979) Zbl0414.20058MR0552166
- Sabinin L.V., On the equivalence of categories of loops and homogeneous spaces, Soviet Math. Dokl. 13 (1972), 970-974. (1972) Zbl0291.18006
- Sabinin L.V., Methods of nonassociative algebra in differential geometry (Russian), Supplement to the Russian transl. of S. Kobayashi, K. Nomizu, ``Foundations of Differential Geometry'', vol. 1, Nauka, Moscow, 1981, pp. 293-339. MR0628734
- Sabinin L.V., Smooth Quasigroups and Loops, Kluwer Academic Press, Dordrecht, 1999. Zbl1038.20051MR1727714
- Sabinin L.V., Sabinina L.L., Sbitneva L., On the notion of gyrogroup, Aequationes Math. 56 (1998), 11-17. (1998) Zbl0923.20051MR1628291
- Smith J.D.H., A left loop on the -sphere, J. Algebra 176 (1995), 128-138. (1995) Zbl0841.17004MR1345298
- Ungar A.A., The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math. 16 (1989), 168-179. (1989) Zbl0693.20067MR1020224
- Ungar A.A., Weakly associative groups, Results Math. 17 (1990), 149-168. (1990) Zbl0699.20055MR1039282
- Ungar A.A., Thomas precession and its associated grouplike structure, Amer. J. Phys. 59 (1991), 824-834. (1991) MR1126776
- Ungar A.A., The holomorphic automorphism group of the complex disk, Aequationes Math. 47 (1994), 240-254. (1994) Zbl0799.20032MR1268034
- Ungar A.A., Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics, Found. Phys. 27 (1997), 881-951. (1997) MR1477047
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.