Clifford algebras, Möbius transformations, Vahlen matrices, and -loops
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 2, page 319-331
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLawson, Jimmie. "Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 319-331. <http://eudml.org/doc/37763>.
@article{Lawson2010,
abstract = {In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb \{R\}^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^\{-1\}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline\{w\}z)^\{-1\}$ for the Möbius loop multiplication in the unit complex disk).},
author = {Lawson, Jimmie},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bruck loop; Clifford algebra; gyrogroup; Möbius transformations; Vahlen matrices; involutive group; Bruck loops; Möbius transformations; Clifford algebras; gyrogroups; Vahlen matrices; involutive groups},
language = {eng},
number = {2},
pages = {319-331},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops},
url = {http://eudml.org/doc/37763},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Lawson, Jimmie
TI - Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 319
EP - 331
AB - In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb {R}^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^{-1}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline{w}z)^{-1}$ for the Möbius loop multiplication in the unit complex disk).
LA - eng
KW - Bruck loop; Clifford algebra; gyrogroup; Möbius transformations; Vahlen matrices; involutive group; Bruck loops; Möbius transformations; Clifford algebras; gyrogroups; Vahlen matrices; involutive groups
UR - http://eudml.org/doc/37763
ER -
References
top- Ahlfors L.V., Möbius transformations and Clifford numbers, in Differential Geometry and Complex Analysis (I. Chavel and H.M. Farkas, Eds.), Springer, Berlin, 1985, pp. 65–73. Zbl0569.30040MR0780036
- Foguel T., Ungar A.A., 10.1515/jgth.2000.003, J. Group Theory 3 (2000), 27–46. MR1736515DOI10.1515/jgth.2000.003
- Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. MR0175991DOI10.1016/0021-8693(64)90017-1
- Glauberman G., 10.1016/0021-8693(68)90050-1, J. Algebra 8 (1968), 393–414. Zbl0155.03901MR0222198DOI10.1016/0021-8693(68)90050-1
- Karzel H., 10.1016/S0012-365X(99)00085-0, Discrete Mahematics 208/209 (1999), 387–409. Zbl0941.51002MR1725545DOI10.1016/S0012-365X(99)00085-0
- Kiechle H., 10.1007/b83276, Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl0997.20059MR1899153DOI10.1007/b83276
- Kinyon M., Global left loop structures on spheres, Comment. Math. Univ. Carolin. 41 (2000), 325–346. Zbl1041.20044MR1780875
- Kinyon M., Jones O., 10.1080/00927870008827079, Comm. Algebra 28 (2000), 4137–4164. Zbl0974.20049MR1772003DOI10.1080/00927870008827079
- Kreuzer A., 10.1007/BF03322307, Results Math. 23 (1993), 355–362. Zbl0788.20036MR1215220DOI10.1007/BF03322307
- Karzel H., Wefelscheid H., 10.1007/BF03322306, Results Math. 23 (1993), 338–354. Zbl0788.20034MR1215219DOI10.1007/BF03322306
- Ungar A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co., Hackensack, NJ, 2008. Zbl1147.83004MR2169236
- Vahlen K.Th., 10.1007/BF01450354, Math. Ann. 55 (1902), p. 585. MR1511164DOI10.1007/BF01450354
- Waterman P.L., 10.1006/aima.1993.1043, Advances in Math. 101 (1993), 87–113. Zbl0793.15019MR1239454DOI10.1006/aima.1993.1043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.