Clifford algebras, Möbius transformations, Vahlen matrices, and B -loops

Jimmie Lawson

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 2, page 319-331
  • ISSN: 0010-2628

Abstract

top
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball B in n -dimensional euclidean space n . One notable achievement is a compact, convenient formula for the Möbius loop operation a * b = ( a + b ) ( 1 - a b ) - 1 , where the operations on the right are those arising from the Clifford algebra (a formula comparable to ( w + z ) ( 1 + w ¯ z ) - 1 for the Möbius loop multiplication in the unit complex disk).

How to cite

top

Lawson, Jimmie. "Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 319-331. <http://eudml.org/doc/37763>.

@article{Lawson2010,
abstract = {In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb \{R\}^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^\{-1\}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline\{w\}z)^\{-1\}$ for the Möbius loop multiplication in the unit complex disk).},
author = {Lawson, Jimmie},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bruck loop; Clifford algebra; gyrogroup; Möbius transformations; Vahlen matrices; involutive group; Bruck loops; Möbius transformations; Clifford algebras; gyrogroups; Vahlen matrices; involutive groups},
language = {eng},
number = {2},
pages = {319-331},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops},
url = {http://eudml.org/doc/37763},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Lawson, Jimmie
TI - Clifford algebras, Möbius transformations, Vahlen matrices, and $B$-loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 319
EP - 331
AB - In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball $B$ in $n$-dimensional euclidean space $\mathbb {R}^n$. One notable achievement is a compact, convenient formula for the Möbius loop operation $a\ast b=(a+b)(1-ab)^{-1}$, where the operations on the right are those arising from the Clifford algebra (a formula comparable to $(w+z)(1+\overline{w}z)^{-1}$ for the Möbius loop multiplication in the unit complex disk).
LA - eng
KW - Bruck loop; Clifford algebra; gyrogroup; Möbius transformations; Vahlen matrices; involutive group; Bruck loops; Möbius transformations; Clifford algebras; gyrogroups; Vahlen matrices; involutive groups
UR - http://eudml.org/doc/37763
ER -

References

top
  1. Ahlfors L.V., Möbius transformations and Clifford numbers, in Differential Geometry and Complex Analysis (I. Chavel and H.M. Farkas, Eds.), Springer, Berlin, 1985, pp. 65–73. Zbl0569.30040MR0780036
  2. Foguel T., Ungar A.A., 10.1515/jgth.2000.003, J. Group Theory 3 (2000), 27–46. MR1736515DOI10.1515/jgth.2000.003
  3. Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. MR0175991DOI10.1016/0021-8693(64)90017-1
  4. Glauberman G., 10.1016/0021-8693(68)90050-1, J. Algebra 8 (1968), 393–414. Zbl0155.03901MR0222198DOI10.1016/0021-8693(68)90050-1
  5. Karzel H., 10.1016/S0012-365X(99)00085-0, Discrete Mahematics 208/209 (1999), 387–409. Zbl0941.51002MR1725545DOI10.1016/S0012-365X(99)00085-0
  6. Kiechle H., 10.1007/b83276, Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl0997.20059MR1899153DOI10.1007/b83276
  7. Kinyon M., Global left loop structures on spheres, Comment. Math. Univ. Carolin. 41 (2000), 325–346. Zbl1041.20044MR1780875
  8. Kinyon M., Jones O., 10.1080/00927870008827079, Comm. Algebra 28 (2000), 4137–4164. Zbl0974.20049MR1772003DOI10.1080/00927870008827079
  9. Kreuzer A., 10.1007/BF03322307, Results Math. 23 (1993), 355–362. Zbl0788.20036MR1215220DOI10.1007/BF03322307
  10. Karzel H., Wefelscheid H., 10.1007/BF03322306, Results Math. 23 (1993), 338–354. Zbl0788.20034MR1215219DOI10.1007/BF03322306
  11. Ungar A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co., Hackensack, NJ, 2008. Zbl1147.83004MR2169236
  12. Vahlen K.Th., 10.1007/BF01450354, Math. Ann. 55 (1902), p. 585. MR1511164DOI10.1007/BF01450354
  13. Waterman P.L., 10.1006/aima.1993.1043, Advances in Math. 101 (1993), 87–113. Zbl0793.15019MR1239454DOI10.1006/aima.1993.1043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.