Equivalence of the properties ( β ) and (NUC) in Orlicz spaces

Sompong Dhompongsa

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 449-457
  • ISSN: 0010-2628

Abstract

top
We obtain the equivalence of the properties ( β ) and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.

How to cite

top

Dhompongsa, Sompong. "Equivalence of the properties ($\beta $) and (NUC) in Orlicz spaces." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 449-457. <http://eudml.org/doc/248596>.

@article{Dhompongsa2000,
abstract = {We obtain the equivalence of the properties $(\beta )$ and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.},
author = {Dhompongsa, Sompong},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz spaces; property $(\beta )$; property (NUC); Orlicz spaces; nearly uniformly convex; drop property},
language = {eng},
number = {3},
pages = {449-457},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Equivalence of the properties ($\beta $) and (NUC) in Orlicz spaces},
url = {http://eudml.org/doc/248596},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Dhompongsa, Sompong
TI - Equivalence of the properties ($\beta $) and (NUC) in Orlicz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 449
EP - 457
AB - We obtain the equivalence of the properties $(\beta )$ and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.
LA - eng
KW - Orlicz spaces; property $(\beta )$; property (NUC); Orlicz spaces; nearly uniformly convex; drop property
UR - http://eudml.org/doc/248596
ER -

References

top
  1. Chen S., Geometry of Orlicz spaces, Dissertationes Mathematicae 356, Warszawa, 1996. Zbl1089.46500MR1410390
  2. Clarkson J.A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880
  3. Cui Y., Pluciennik R., Wang T., On property ( β ) in Orlicz spaces, Arch. Math. 68 (1997), 1-13. (1997) Zbl0894.46023MR1452160
  4. Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 473-549. (1980) Zbl0505.46011MR0595102
  5. Kutzarova D.N., A nearly uniformly convex space which is not a ( β ) space, Acta Univ. Carolinae Math. Phys. 30 (1989), 95-98. (1989) Zbl0715.46006MR1046453
  6. Kutzarova D.N., An isomorphic characterization of property ( β ) of Rolewicz, Note Mat. 10.2 (1990), 347-354. (1990) Zbl0789.46009MR1204212
  7. Kutzarova D.N., On condition ( β ) and Δ -uniform convexity, C.R. Acad. Bulgar Sci. 42.1 (1989), 15-18. (1989) Zbl0696.46017MR0991453
  8. Montesinos V., Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. (1987) Zbl0652.46009MR0924764
  9. Montesinos V., Torregrosa J.R., A uniform geometric property of Banach spaces, Rocky Mountain J. Math. 22.2 (1992), 683-690. (1992) Zbl0788.46020MR1180730
  10. Musielak J., Orlicz spaces and modular spaces, LNM 1034, pp.1-222, Berlin-Heidelberg-New York (1983). (1983) Zbl0557.46020MR0724434
  11. Rolewicz S., On drop property, Studia Math. 85 (1987), 27-35. (1987) MR0879413
  12. Rolewicz S., On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 181-191. (1987) Zbl0652.46010MR0928575

NotesEmbed ?

top

You must be logged in to post comments.