Equivalence of the properties ( β ) and (NUC) in Orlicz spaces

Sompong Dhompongsa

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 449-457
  • ISSN: 0010-2628

Abstract

top
We obtain the equivalence of the properties ( β ) and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.

How to cite

top

Dhompongsa, Sompong. "Equivalence of the properties ($\beta $) and (NUC) in Orlicz spaces." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 449-457. <http://eudml.org/doc/248596>.

@article{Dhompongsa2000,
abstract = {We obtain the equivalence of the properties $(\beta )$ and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.},
author = {Dhompongsa, Sompong},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz spaces; property $(\beta )$; property (NUC); Orlicz spaces; nearly uniformly convex; drop property},
language = {eng},
number = {3},
pages = {449-457},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Equivalence of the properties ($\beta $) and (NUC) in Orlicz spaces},
url = {http://eudml.org/doc/248596},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Dhompongsa, Sompong
TI - Equivalence of the properties ($\beta $) and (NUC) in Orlicz spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 449
EP - 457
AB - We obtain the equivalence of the properties $(\beta )$ and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.
LA - eng
KW - Orlicz spaces; property $(\beta )$; property (NUC); Orlicz spaces; nearly uniformly convex; drop property
UR - http://eudml.org/doc/248596
ER -

References

top
  1. Chen S., Geometry of Orlicz spaces, Dissertationes Mathematicae 356, Warszawa, 1996. Zbl1089.46500MR1410390
  2. Clarkson J.A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880
  3. Cui Y., Pluciennik R., Wang T., On property ( β ) in Orlicz spaces, Arch. Math. 68 (1997), 1-13. (1997) Zbl0894.46023MR1452160
  4. Huff R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 473-549. (1980) Zbl0505.46011MR0595102
  5. Kutzarova D.N., A nearly uniformly convex space which is not a ( β ) space, Acta Univ. Carolinae Math. Phys. 30 (1989), 95-98. (1989) Zbl0715.46006MR1046453
  6. Kutzarova D.N., An isomorphic characterization of property ( β ) of Rolewicz, Note Mat. 10.2 (1990), 347-354. (1990) Zbl0789.46009MR1204212
  7. Kutzarova D.N., On condition ( β ) and Δ -uniform convexity, C.R. Acad. Bulgar Sci. 42.1 (1989), 15-18. (1989) Zbl0696.46017MR0991453
  8. Montesinos V., Drop property equals reflexivity, Studia Math. 87 (1987), 93-100. (1987) Zbl0652.46009MR0924764
  9. Montesinos V., Torregrosa J.R., A uniform geometric property of Banach spaces, Rocky Mountain J. Math. 22.2 (1992), 683-690. (1992) Zbl0788.46020MR1180730
  10. Musielak J., Orlicz spaces and modular spaces, LNM 1034, pp.1-222, Berlin-Heidelberg-New York (1983). (1983) Zbl0557.46020MR0724434
  11. Rolewicz S., On drop property, Studia Math. 85 (1987), 27-35. (1987) MR0879413
  12. Rolewicz S., On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 181-191. (1987) Zbl0652.46010MR0928575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.