Uniform non-squareness and property ( β ) of Besicovitch-Orlicz spaces of almost periodic functions with Orlicz norm

Fatiha Boulahia; Mohamed Morsli

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 3, page 417-426
  • ISSN: 0010-2628

Abstract

top
We characterize the uniform non-squareness and the property ( β ) of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm.

How to cite

top

Boulahia, Fatiha, and Morsli, Mohamed. "Uniform non-squareness and property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions with Orlicz norm." Commentationes Mathematicae Universitatis Carolinae 51.3 (2010): 417-426. <http://eudml.org/doc/38137>.

@article{Boulahia2010,
abstract = {We characterize the uniform non-squareness and the property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm.},
author = {Boulahia, Fatiha, Morsli, Mohamed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Besicovitch-Orlicz space; almost periodic function; uniform non-squareness; property $(\beta )$; Besicovitch-Orlicz space; almost periodic function; uniform non-squareness; property },
language = {eng},
number = {3},
pages = {417-426},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Uniform non-squareness and property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions with Orlicz norm},
url = {http://eudml.org/doc/38137},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Boulahia, Fatiha
AU - Morsli, Mohamed
TI - Uniform non-squareness and property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions with Orlicz norm
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 3
SP - 417
EP - 426
AB - We characterize the uniform non-squareness and the property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm.
LA - eng
KW - Besicovitch-Orlicz space; almost periodic function; uniform non-squareness; property $(\beta )$; Besicovitch-Orlicz space; almost periodic function; uniform non-squareness; property
UR - http://eudml.org/doc/38137
ER -

References

top
  1. Chen S., Geometry of Orlicz spaces, Dissertationes Math. 356 (1996). Zbl1089.46500MR1410390
  2. Chen S., Hudzik H., On some convexities of Orlicz and Orlich-Bochner spaces, Comment. Math. Univ. Carolin. 29 (1988), 13–29. MR0937545
  3. Cui Y., Pluciennik R., Wang T., 10.1007/s000130050093, Arch. Math. 69 (1997), 57–69. Zbl0894.46023MR1452160DOI10.1007/s000130050093
  4. James R.C., 10.2307/1970663, Ann. of Math. 80 (1964), 542–550. Zbl0132.08902MR0173932DOI10.2307/1970663
  5. Hudzik H., Uniformly non- l n 1 Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271–284. MR0808569
  6. Hudzik H., Geometry of some classes of Banach function spaces, Proceeding of the International Symposium on Banach and Function Spaces (Kitakyshu, Japan, October 2–4, 2003), pp. 17–57. Zbl1085.46010MR2147600
  7. Garcia-Falset J., Llorens-Fuster E., Mazcunan-Navarro E.M., 10.1016/j.jfa.2005.09.002, J. Funct. Anal. 233 (2006), 494–514. Zbl1120.46006MR2214585DOI10.1016/j.jfa.2005.09.002
  8. Kutzarova D.N., 10.1016/0022-247X(91)90153-Q, J. Math. Anal. Appl. 162 (1991), 322–338. Zbl0757.46026MR1137623DOI10.1016/0022-247X(91)90153-Q
  9. Kolwicz P., The property ( β ) of Orlicz-Bochner sequence spaces, Comment. Math. Univ. Carolin. 42 (2001), 119–132. Zbl1056.46020MR1825377
  10. Morsli M., On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Prace Mat. 34 (1994), 137–152. Zbl0839.46012MR1325081
  11. Morsli M., Bedouhene F., Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103–117. Zbl1090.46010MR1903310
  12. Morsli M., Boulahia F., Uniformly non- l n 1 Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Prace Mat. 45 (2005), no. 1, 25–34. MR2199891
  13. Morsli M., Bedouhene F., 10.4064/cm102-1-9, Colloq. Math. 102 (2005), no. 1, 97–111. Zbl1112.46013MR2150272DOI10.4064/cm102-1-9
  14. Rolewicz S., On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 181–191. Zbl0652.46010MR0928575
  15. Dhompongsa S., Equivalence of the properties ( β ) and (NUC), in Orlicz spaces, Comment. Math. Univ. Carolin. 41 (2000), no. 3, 449–457. Zbl1040.46026MR1795076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.