Bounds for the spectral radius of positive operators
Commentationes Mathematicae Universitatis Carolinae (2000)
- Volume: 41, Issue: 3, page 459-467
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
- Förster K.-H., Nagy B., On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Linear Algebra Appl. 120 193-205 (1989). (1989) MR1010057
- Förster K.-H., Nagy B., On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55 155-166 (1991). (1991) MR1124954
- Grobler J.J., A note on the theorems of Jentzsch-Perron and Frobenius, Indagationes Math. 49 381-391 (1987). (1987) Zbl0634.47034MR0922442
- Johnson C.R., Bru R., The spectral radius of a product of nonnegative matrices, Linear Algebra Appl. 141 227-240 (1990). (1990) Zbl0712.15013MR1076115
- Marek I., Varga R.S., Nested bounds for the spectral radius, Numer. Math. 14 49-70 (1969). (1969) Zbl0221.65063MR0257779
- Marek I., Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math. 19 607-628 (1970). (1970) Zbl0219.47022MR0415405
- Marek I., Collatz-Wielandt numbers in general partially ordered spaces, Linear Algebra Appl. 173 165-180 (1992). (1992) Zbl0777.47003MR1170509
- Schaefer H.H., Banach lattices and positive operators, (Grundlehren Math. Wiss. Bd. 215), Springer-Verlag, New York, 1974. Zbl0296.47023MR0423039
- Schaefer H.H., A minimax theorem for irreducible compact operators in -spaces, Israel J. Math. 48 196-204 (1984). (1984) MR0770701
- Wielandt H., Unzerlegbare, nicht-negative Matrizen,, Math. Z. 52 642-648 (1950). (1950) Zbl0035.29101MR0035265
- Zaanen A.C., Riesz Spaces II, North Holland, Amsterdam, 1983. Zbl0519.46001MR0704021